Refining 3D Human Texture Estimation from a Single Image
- URL: http://arxiv.org/abs/2303.03471v1
- Date: Mon, 6 Mar 2023 19:53:50 GMT
- Title: Refining 3D Human Texture Estimation from a Single Image
- Authors: Said Fahri Altindis, Adil Meric, Yusuf Dalva, Ugur Gudukbay, Aysegul
Dundar
- Abstract summary: Estimating 3D human texture from a single image is essential in graphics and vision.
We propose a framework that adaptively samples the input by a deformable convolution where offsets are learned via a deep neural network.
- Score: 3.8761064607384195
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Estimating 3D human texture from a single image is essential in graphics and
vision. It requires learning a mapping function from input images of humans
with diverse poses into the parametric (UV) space and reasonably hallucinating
invisible parts. To achieve a high-quality 3D human texture estimation, we
propose a framework that adaptively samples the input by a deformable
convolution where offsets are learned via a deep neural network. Additionally,
we describe a novel cycle consistency loss that improves view generalization.
We further propose to train our framework with an uncertainty-based pixel-level
image reconstruction loss, which enhances color fidelity. We compare our method
against the state-of-the-art approaches and show significant qualitative and
quantitative improvements.
Related papers
- 3D Facial Expressions through Analysis-by-Neural-Synthesis [30.2749903946587]
SMIRK (Spatial Modeling for Image-based Reconstruction of Kinesics) faithfully reconstructs expressive 3D faces from images.
We identify two key limitations in existing methods: shortcomings in their self-supervised training formulation, and a lack of expression diversity in the training images.
Our qualitative, quantitative and particularly our perceptual evaluations demonstrate that SMIRK achieves the new state-of-the art performance on accurate expression reconstruction.
arXiv Detail & Related papers (2024-04-05T14:00:07Z) - ConTex-Human: Free-View Rendering of Human from a Single Image with
Texture-Consistent Synthesis [49.28239918969784]
We introduce a texture-consistent back view synthesis module that could transfer the reference image content to the back view.
We also propose a visibility-aware patch consistency regularization for texture mapping and refinement combined with the synthesized back view texture.
arXiv Detail & Related papers (2023-11-28T13:55:53Z) - SiTH: Single-view Textured Human Reconstruction with Image-Conditioned Diffusion [35.73448283467723]
SiTH is a novel pipeline that integrates an image-conditioned diffusion model into a 3D mesh reconstruction workflow.
We employ a powerful generative diffusion model to hallucinate unseen back-view appearance based on the input images.
For the latter, we leverage skinned body meshes as guidance to recover full-body texture meshes from the input and back-view images.
arXiv Detail & Related papers (2023-11-27T14:22:07Z) - High-fidelity 3D GAN Inversion by Pseudo-multi-view Optimization [51.878078860524795]
We present a high-fidelity 3D generative adversarial network (GAN) inversion framework that can synthesize photo-realistic novel views.
Our approach enables high-fidelity 3D rendering from a single image, which is promising for various applications of AI-generated 3D content.
arXiv Detail & Related papers (2022-11-28T18:59:52Z) - NeuralReshaper: Single-image Human-body Retouching with Deep Neural
Networks [50.40798258968408]
We present NeuralReshaper, a novel method for semantic reshaping of human bodies in single images using deep generative networks.
Our approach follows a fit-then-reshape pipeline, which first fits a parametric 3D human model to a source human image.
To deal with the lack-of-data problem that no paired data exist, we introduce a novel self-supervised strategy to train our network.
arXiv Detail & Related papers (2022-03-20T09:02:13Z) - 3D Human Texture Estimation from a Single Image with Transformers [106.6320286821364]
We propose a Transformer-based framework for 3D human texture estimation from a single image.
We also propose a mask-fusion strategy to combine the advantages of the RGB-based and texture-flow-based models.
arXiv Detail & Related papers (2021-09-06T16:00:20Z) - Neural Re-Rendering of Humans from a Single Image [80.53438609047896]
We propose a new method for neural re-rendering of a human under a novel user-defined pose and viewpoint.
Our algorithm represents body pose and shape as a parametric mesh which can be reconstructed from a single image.
arXiv Detail & Related papers (2021-01-11T18:53:47Z) - Neural Descent for Visual 3D Human Pose and Shape [67.01050349629053]
We present deep neural network methodology to reconstruct the 3d pose and shape of people, given an input RGB image.
We rely on a recently introduced, expressivefull body statistical 3d human model, GHUM, trained end-to-end.
Central to our methodology, is a learning to learn and optimize approach, referred to as HUmanNeural Descent (HUND), which avoids both second-order differentiation.
arXiv Detail & Related papers (2020-08-16T13:38:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.