CAnet: Uplink-aided Downlink Channel Acquisition in FDD Massive MIMO
using Deep Learning
- URL: http://arxiv.org/abs/2101.04377v1
- Date: Tue, 12 Jan 2021 10:12:28 GMT
- Title: CAnet: Uplink-aided Downlink Channel Acquisition in FDD Massive MIMO
using Deep Learning
- Authors: Jiajia Guo, Chao-Kai Wen, Shi Jin
- Abstract summary: In frequency-division duplexing systems, the downlink channel state information (CSI) acquisition scheme leads to high training and feedback overheads.
We propose an uplink-aided downlink channel acquisition framework using deep learning to reduce these overheads.
- Score: 51.72869237847767
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In frequency-division duplexing systems, the downlink channel state
information (CSI) acquisition scheme leads to high training and feedback
overheads. In this paper, we propose an uplink-aided downlink channel
acquisition framework using deep learning to reduce these overheads. Unlike
most existing works that focus only on channel estimation or feedback modules,
to the best of our knowledge, this is the first study that considers the entire
downlink CSI acquisition process, including downlink pilot design, channel
estimation, and feedback. First, we propose an adaptive pilot design module by
exploiting the correlation in magnitude among bidirectional channels in the
angular domain to improve channel estimation. Next, to avoid the bit allocation
problem during the feedback module, we concatenate the complex channel and
embed the uplink channel magnitude to the channel reconstruction at the base
station. Lastly, we combine the above two modules and compare two popular
downlink channel acquisition frameworks. The former framework estimates and
feeds back the channel at the user equipment subsequently. The user equipment
in the latter one directly feeds back the received pilot signals to the base
station. Our results reveal that, with the help of uplink, directly feeding
back the pilot signals can save approximately 20% of feedback bits, which
provides a guideline for future research.
Related papers
- Belief Information based Deep Channel Estimation for Massive MIMO Systems [11.438967822079542]
The proposed method can either improve 1 2 dB channel estimation performance or reduce 1/3 1/2 pilot overhead.
Experimental results demonstrate that the proposed method can either improve 1 2 dB channel estimation performance or reduce 1/3 1/2 pilot overhead.
arXiv Detail & Related papers (2024-06-23T15:31:07Z) - Deep-Learning-Based Channel Estimation for Distributed MIMO with 1-bit Radio-Over-Fiber Fronthaul [11.370869277334227]
We consider the problem of pilot-aided, uplink channel estimation in a distributed massive multiple-input multiple-output (MIMO) architecture.
We adapt the deep-learning-based channel-estimation algorithm recently proposed by Nguyen et al.
We show that the proposed method outperforms significantly the Bussgang linear minimum mean-square error channel estimator.
arXiv Detail & Related papers (2024-06-17T08:38:29Z) - Joint Channel Estimation and Feedback with Masked Token Transformers in
Massive MIMO Systems [74.52117784544758]
This paper proposes an encoder-decoder based network that unveils the intrinsic frequency-domain correlation within the CSI matrix.
The entire encoder-decoder network is utilized for channel compression.
Our method outperforms state-of-the-art channel estimation and feedback techniques in joint tasks.
arXiv Detail & Related papers (2023-06-08T06:15:17Z) - Deep Generative Models for Downlink Channel Estimation in FDD Massive
MIMO Systems [13.267048706241157]
We propose a deep generative model (DGM)-based technique to address this challenge.
Exploiting the partial reciprocity of uplink and downlink channels, we first estimate the frequency-independent underlying channel parameters.
Then, the frequency-specific underlying channel parameters, namely, the phase of each propagation path, are estimated via downlink training.
arXiv Detail & Related papers (2022-03-09T18:32:10Z) - Learning to Perform Downlink Channel Estimation in Massive MIMO Systems [72.76968022465469]
We study downlink (DL) channel estimation in a Massive multiple-input multiple-output (MIMO) system.
A common approach is to use the mean value as the estimate, motivated by channel hardening.
We propose two novel estimation methods.
arXiv Detail & Related papers (2021-09-06T13:42:32Z) - Deep Learning Based Antenna-time Domain Channel Extrapolation for Hybrid
mmWave Massive MIMO [30.201881862681972]
We design a latent ordinary differential equation (ODE)-based network to learn the mapping function from the partial uplink channels to the full downlink ones at the base station.
Simulation results show that the designed network can efficiently infer the full downlink channels from the partial uplink ones.
arXiv Detail & Related papers (2021-08-09T11:12:46Z) - Model-Driven Deep Learning Based Channel Estimation and Feedback for
Millimeter-Wave Massive Hybrid MIMO Systems [61.78590389147475]
This paper proposes a model-driven deep learning (MDDL)-based channel estimation and feedback scheme for millimeter-wave (mmWave) systems.
To reduce the uplink pilot overhead for estimating the high-dimensional channels from a limited number of radio frequency (RF) chains, we propose to jointly train the phase shift network and the channel estimator as an auto-encoder.
Numerical results show that the proposed MDDL-based channel estimation and feedback scheme outperforms the state-of-the-art approaches.
arXiv Detail & Related papers (2021-04-22T13:34:53Z) - Deep Learning Based Antenna Selection for Channel Extrapolation in FDD
Massive MIMO [54.54508321463112]
In massive multiple-input multiple-output (MIMO) systems, the large number of antennas would bring a great challenge for the acquisition of the accurate channel state information.
We utilize the neural networks (NNs) to capture the inherent connection between the uplink and downlink channel data sets and extrapolate the downlink channels from a subset of the uplink channel state information.
We study the antenna subset selection problem in order to achieve the best channel extrapolation and decrease the data size of NNs.
arXiv Detail & Related papers (2020-09-03T13:38:52Z) - Convergence of Federated Learning over a Noisy Downlink [84.55126371346452]
We study federated learning, where power-limited wireless devices utilize their local datasets to collaboratively train a global model with the help of a remote parameter server.
This framework requires downlink transmission from the PS to the devices and uplink transmission from the devices to the PS.
The goal of this study is to investigate the impact of the bandwidth-limited shared wireless medium in both the downlink and uplink on the performance of FL.
arXiv Detail & Related papers (2020-08-25T16:15:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.