Belief Information based Deep Channel Estimation for Massive MIMO Systems
- URL: http://arxiv.org/abs/2407.07744v1
- Date: Sun, 23 Jun 2024 15:31:07 GMT
- Title: Belief Information based Deep Channel Estimation for Massive MIMO Systems
- Authors: Jialong Xu, Liu Liu, Xin Wang, Lan Chen,
- Abstract summary: The proposed method can either improve 1 2 dB channel estimation performance or reduce 1/3 1/2 pilot overhead.
Experimental results demonstrate that the proposed method can either improve 1 2 dB channel estimation performance or reduce 1/3 1/2 pilot overhead.
- Score: 11.438967822079542
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the next generation wireless communication system, transmission rates should continue to rise to support emerging scenarios, e.g., the immersive communications. From the perspective of communication system evolution, multiple-input multiple-output (MIMO) technology remains pivotal for enhancing transmission rates. However, current MIMO systems rely on inserting pilot signals to achieve accurate channel estimation. As the increase of transmit stream, the pilots consume a significant portion of transmission resources, severely reducing the spectral efficiency. In this correspondence, we propose a belief information based mechanism. By introducing a plug-and-play belief information module, existing single-antenna channel estimation networks could be seamlessly adapted to multi-antenna channel estimation and fully exploit the spatial correlation among multiple antennas. Experimental results demonstrate that the proposed method can either improve 1 ~ 2 dB channel estimation performance or reduce 1/3 ~ 1/2 pilot overhead, particularly in bad channel conditions.
Related papers
- Low-Overhead Channel Estimation via 3D Extrapolation for TDD mmWave Massive MIMO Systems Under High-Mobility Scenarios [41.213515826100696]
We propose a spatial, frequency, and temporal domain (3D) channel extrapolation framework to systematically reduce the pilot overhead.
Numerical results demonstrate the superiority of the proposed framework in significantly reducing the pilot training overhead by more than 16 times.
arXiv Detail & Related papers (2024-06-13T07:42:25Z) - Benchmarking Semantic Communications for Image Transmission Over MIMO Interference Channels [11.108614988357008]
We propose an interference-robust semantic communication (IRSC) scheme for general multiple-input multiple-output (MIMO) interference channels.
This scheme involves the development of transceivers based on neural networks (NNs), which integrate channel state information (CSI) either solely at the receiver or at both transmitter and receiver ends.
Experimental results demonstrate that the proposed IRSC scheme effectively learns to mitigate interference and outperforms baseline approaches.
arXiv Detail & Related papers (2024-04-10T11:40:22Z) - Joint Channel Estimation and Feedback with Masked Token Transformers in
Massive MIMO Systems [74.52117784544758]
This paper proposes an encoder-decoder based network that unveils the intrinsic frequency-domain correlation within the CSI matrix.
The entire encoder-decoder network is utilized for channel compression.
Our method outperforms state-of-the-art channel estimation and feedback techniques in joint tasks.
arXiv Detail & Related papers (2023-06-08T06:15:17Z) - Pay Less But Get More: A Dual-Attention-based Channel Estimation Network
for Massive MIMO Systems with Low-Density Pilots [41.213515826100696]
We propose a dual-attention-based channel estimation network (DACEN) to realize accurate channel estimation via low-density pilots.
Experimental results reveal that the proposed DACEN-based method achieves better channel estimation performance than the existing methods.
arXiv Detail & Related papers (2023-03-02T05:34:25Z) - Random Orthogonalization for Federated Learning in Massive MIMO Systems [85.71432283670114]
We propose a novel communication design for federated learning (FL) in a massive multiple-input and multiple-output (MIMO) wireless system.
Key novelty of random orthogonalization comes from the tight coupling of FL and two unique characteristics of massive MIMO -- channel hardening and favorable propagation.
We extend this principle to the downlink communication phase and develop a simple but highly effective model broadcast method for FL.
arXiv Detail & Related papers (2022-10-18T14:17:10Z) - Learning to Perform Downlink Channel Estimation in Massive MIMO Systems [72.76968022465469]
We study downlink (DL) channel estimation in a Massive multiple-input multiple-output (MIMO) system.
A common approach is to use the mean value as the estimate, motivated by channel hardening.
We propose two novel estimation methods.
arXiv Detail & Related papers (2021-09-06T13:42:32Z) - Model-Driven Deep Learning Based Channel Estimation and Feedback for
Millimeter-Wave Massive Hybrid MIMO Systems [61.78590389147475]
This paper proposes a model-driven deep learning (MDDL)-based channel estimation and feedback scheme for millimeter-wave (mmWave) systems.
To reduce the uplink pilot overhead for estimating the high-dimensional channels from a limited number of radio frequency (RF) chains, we propose to jointly train the phase shift network and the channel estimator as an auto-encoder.
Numerical results show that the proposed MDDL-based channel estimation and feedback scheme outperforms the state-of-the-art approaches.
arXiv Detail & Related papers (2021-04-22T13:34:53Z) - CAnet: Uplink-aided Downlink Channel Acquisition in FDD Massive MIMO
using Deep Learning [51.72869237847767]
In frequency-division duplexing systems, the downlink channel state information (CSI) acquisition scheme leads to high training and feedback overheads.
We propose an uplink-aided downlink channel acquisition framework using deep learning to reduce these overheads.
arXiv Detail & Related papers (2021-01-12T10:12:28Z) - Deep Learning Based Antenna Selection for Channel Extrapolation in FDD
Massive MIMO [54.54508321463112]
In massive multiple-input multiple-output (MIMO) systems, the large number of antennas would bring a great challenge for the acquisition of the accurate channel state information.
We utilize the neural networks (NNs) to capture the inherent connection between the uplink and downlink channel data sets and extrapolate the downlink channels from a subset of the uplink channel state information.
We study the antenna subset selection problem in order to achieve the best channel extrapolation and decrease the data size of NNs.
arXiv Detail & Related papers (2020-09-03T13:38:52Z) - Pruning the Pilots: Deep Learning-Based Pilot Design and Channel
Estimation for MIMO-OFDM Systems [8.401473551081748]
We propose a neural network (NN)-based joint pilot design and downlink channel estimation scheme.
The proposed NN architecture uses fully connected layers for frequency-aware pilot design and outperforms linear minimum mean square error (LMMSE) estimation.
We also propose an effective pilot reduction technique by gradually pruning less significant neurons from the dense NN layers during training.
arXiv Detail & Related papers (2020-06-21T13:10:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.