論文の概要: Fine-grained Semantic Constraint in Image Synthesis
- arxiv url: http://arxiv.org/abs/2101.04558v1
- Date: Tue, 12 Jan 2021 15:51:49 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-04 01:43:21.458778
- Title: Fine-grained Semantic Constraint in Image Synthesis
- Title(参考訳): 画像合成におけるきめ細かいセマンティック制約
- Authors: Pengyang Li and Donghui Wang
- Abstract要約: 本稿では,細粒度属性とマスクを入力とした画像合成のための多段高分解能モデルを提案する。
従来のマスクでは、生成した画像が視覚に適合するように、本論文のモデルが制約される。
また,画像の全体像とサブ領域を同時に識別することで,生成的敵ネットワークの識別能力を向上させる手法を提案する。
- 参考スコア(独自算出の注目度): 8.22379888383833
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a multi-stage and high-resolution model for image
synthesis that uses fine-grained attributes and masks as input. With a
fine-grained attribute, the proposed model can detailedly constrain the
features of the generated image through rich and fine-grained semantic
information in the attribute. With mask as prior, the model in this paper is
constrained so that the generated images conform to visual senses, which will
reduce the unexpected diversity of samples generated from the generative
adversarial network. This paper also proposes a scheme to improve the
discriminator of the generative adversarial network by simultaneously
discriminating the total image and sub-regions of the image. In addition, we
propose a method for optimizing the labeled attribute in datasets, which
reduces the manual labeling noise. Extensive quantitative results show that our
image synthesis model generates more realistic images.
- Abstract(参考訳): 本稿では,精細な属性とマスクを入力として用いる多段高分解能画像合成モデルを提案する。
提案モデルでは, 微粒化属性を用いて, 得られた画像の特徴を, 属性内の細粒化情報を通じて詳細に制約することができる。
従来のマスクでは,生成した画像が視覚に適合するように制約され,生成する対向ネットワークから生成されたサンプルの予期せぬ多様性が低減される。
また,画像の全体像とサブ領域を同時に識別することで,生成的敵ネットワークの識別能力を向上させる手法を提案する。
さらに,データセットのラベル付き属性を最適化する手法を提案し,手動ラベリングノイズを低減する。
その結果,画像合成モデルはよりリアルな画像を生成することがわかった。
関連論文リスト
- FreeCompose: Generic Zero-Shot Image Composition with Diffusion Prior [50.0535198082903]
我々は,複数の入力イメージを単一のコヒーレントなイメージに統合する,新しい画像合成手法を提案する。
本稿では, 大規模事前学習拡散モデルに内在する強力な生成的前駆体を利用して, 汎用画像合成を実現する可能性を示す。
論文 参考訳(メタデータ) (2024-07-06T03:35:43Z) - Diverse and Tailored Image Generation for Zero-shot Multi-label Classification [3.354528906571718]
ゼロショットのマルチラベル分類は、人間のアノテーションを使わずに、目に見えないラベルで予測を実行する能力について、かなりの注目を集めている。
一般的なアプローチでは、目に見えないものに対する不完全なプロキシとしてクラスをよく使用します。
本稿では,未確認ラベル上でのプロキシレストレーニングに適したトレーニングセットを構築するために,合成データを生成する,革新的なソリューションを提案する。
論文 参考訳(メタデータ) (2024-04-04T01:34:36Z) - Unlocking Pre-trained Image Backbones for Semantic Image Synthesis [29.688029979801577]
本稿では,現実的な画像を生成するセマンティック画像合成のための新しい種類のGAN識別器を提案する。
DP-SIMSをダブした本モデルでは,ADE-20K,COCO-Stuff,Cityscapesの入力ラベルマップと画像品質と一貫性の両面から,最新の結果が得られる。
論文 参考訳(メタデータ) (2023-12-20T09:39:19Z) - Attribute-Aware Deep Hashing with Self-Consistency for Large-Scale
Fine-Grained Image Retrieval [65.43522019468976]
本稿では属性認識ハッシュコードを生成するための自己整合性を持つ属性認識ハッシュネットワークを提案する。
本研究では,高レベル属性固有ベクトルを教師なしで蒸留する再構成タスクのエンコーダ・デコーダ構造ネットワークを開発する。
我々のモデルは,これらの属性ベクトルに特徴デコリレーション制約を設けて,それらの代表的能力を強化する。
論文 参考訳(メタデータ) (2023-11-21T08:20:38Z) - Semantic Image Synthesis via Diffusion Models [159.4285444680301]
Denoising Diffusion Probabilistic Models (DDPM) は様々な画像生成タスクにおいて顕著な成功を収めた。
セマンティック画像合成に関する最近の研究は、主に「GAN(Generative Adversarial Nets)」に追従している。
論文 参考訳(メタデータ) (2022-06-30T18:31:51Z) - Hierarchical Text-Conditional Image Generation with CLIP Latents [20.476720970770128]
画像表現を明示的に生成することで、フォトリアリズムとキャプションの類似性が最小限に抑えられ、画像の多様性が向上することを示す。
画像表現に条件付けされたデコーダは、その意味とスタイルの両方を保存した画像のバリエーションを生成できる。
論文 参考訳(メタデータ) (2022-04-13T01:10:33Z) - Diverse Semantic Image Synthesis via Probability Distribution Modeling [103.88931623488088]
新規な多様な意味的画像合成フレームワークを提案する。
本手法は最先端手法と比較して優れた多様性と同等の品質を実現することができる。
論文 参考訳(メタデータ) (2021-03-11T18:59:25Z) - Multi-Image Summarization: Textual Summary from a Set of Cohesive Images [17.688344968462275]
本稿では,マルチイメージ要約の新しい課題を提案する。
入力画像のコヒーレントな集合から簡潔で記述的なテキスト要約を生成することを目的としている。
密度の高い平均画像特徴集約ネットワークにより、モデルは属性のコヒーレントなサブセットに集中することができる。
論文 参考訳(メタデータ) (2020-06-15T18:45:35Z) - Example-Guided Image Synthesis across Arbitrary Scenes using Masked
Spatial-Channel Attention and Self-Supervision [83.33283892171562]
実例誘導画像合成は,最近セマンティックラベルマップと模範画像から画像を合成するために試みられている。
本稿では,ラベルマップと意味的に異なる任意のシーンイメージを例に,より困難で汎用的な課題に取り組む。
本稿では,グローバル・ローカルな特徴アライメントと合成のためのエンドツーエンドネットワークを提案する。
論文 参考訳(メタデータ) (2020-04-18T18:17:40Z) - Fine-grained Image-to-Image Transformation towards Visual Recognition [102.51124181873101]
我々は,入力画像の同一性を保った画像を生成するために,微細なカテゴリで画像を変換することを目的としている。
我々は、画像のアイデンティティと非関連要因をアンハングルするために、生成的敵ネットワークに基づくモデルを採用する。
CompCarsとMulti-PIEデータセットの実験では、我々のモデルが生成した画像のアイデンティティを、最先端の画像-画像変換モデルよりもはるかによく保存していることが示された。
論文 参考訳(メタデータ) (2020-01-12T05:26:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。