Robust GPS-Vision Localization via Integrity-Driven Landmark Attention
- URL: http://arxiv.org/abs/2101.04836v1
- Date: Wed, 13 Jan 2021 02:16:13 GMT
- Title: Robust GPS-Vision Localization via Integrity-Driven Landmark Attention
- Authors: Sriramya Bhamidipati and Grace Xingxin Gao
- Abstract summary: Integrity-driven Landmark Attention (ILA) for GPS-vision navigation in urban areas.
Inspired by cognitive attention in humans, we perform convex optimization to select a subset of landmarks.
We demonstrate improved localization accuracy and robust predicted availability for a pre-defined alert limit.
- Score: 2.741266294612776
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: For robust GPS-vision navigation in urban areas, we propose an
Integrity-driven Landmark Attention (ILA) technique via stochastic
reachability. Inspired by cognitive attention in humans, we perform convex
optimization to select a subset of landmarks from GPS and vision measurements
that maximizes integrity-driven performance. Given known measurement error
bounds in non-faulty conditions, our ILA follows a unified approach to address
both GPS and vision faults and is compatible with any off-the-shelf estimator.
We analyze measurement deviation to estimate the stochastic reachable set of
expected position for each landmark, which is parameterized via probabilistic
zonotope (p-Zonotope). We apply set union to formulate a p-Zonotopic cost that
represents the size of position bounds based on landmark inclusion/exclusion.
We jointly minimize the p-Zonotopic cost and maximize the number of landmarks
via convex relaxation. For an urban dataset, we demonstrate improved
localization accuracy and robust predicted availability for a pre-defined alert
limit.
Related papers
- Self-supervised Multi-future Occupancy Forecasting for Autonomous Driving [45.886941596233974]
LiDAR-generated occupancy grid maps (L-OGMs) offer a robust bird's-eye view for the scene representation.
Our proposed framework performs L-OGM prediction in the latent space of a generative architecture.
We decode predictions using either a single-step decoder, which provides high-quality predictions in real-time, or a diffusion-based batch decoder.
arXiv Detail & Related papers (2024-07-30T18:37:59Z) - Enhancing stop location detection for incomplete urban mobility datasets [0.0]
This study investigates the application of classification algorithms to enhance density-based methods for stop identification.
Our approach incorporates multiple features, including individual routine behavior across various time and scales local characteristics of individual GPS points.
arXiv Detail & Related papers (2024-07-16T10:41:08Z) - SPARE: Symmetrized Point-to-Plane Distance for Robust Non-Rigid Registration [76.40993825836222]
We propose SPARE, a novel formulation that utilizes a symmetrized point-to-plane distance for robust non-rigid registration.
The proposed method greatly improves the accuracy of non-rigid registration problems and maintains relatively high solution efficiency.
arXiv Detail & Related papers (2024-05-30T15:55:04Z) - OOSTraj: Out-of-Sight Trajectory Prediction With Vision-Positioning Denoising [49.86409475232849]
Trajectory prediction is fundamental in computer vision and autonomous driving.
Existing approaches in this field often assume precise and complete observational data.
We present a novel method for out-of-sight trajectory prediction that leverages a vision-positioning technique.
arXiv Detail & Related papers (2024-04-02T18:30:29Z) - Secure Navigation using Landmark-based Localization in a GPS-denied
Environment [1.19658449368018]
This paper proposes a novel framework that integrates landmark-based localization (LanBLoc) with an Extended Kalman Filter (EKF) to predict the future state of moving entities along the battlefield.
We present a simulated battlefield scenario for two different approaches that guide a moving entity through an obstacle and hazard-free path.
arXiv Detail & Related papers (2024-02-22T04:41:56Z) - Landmark-based Localization using Stereo Vision and Deep Learning in
GPS-Denied Battlefield Environment [1.19658449368018]
This paper proposes a novel framework for localization in non-GPS battlefield environments using only the passive camera sensors.
The proposed method utilizes a customcalibrated stereo vision camera for distance estimation and the YOLOv8s model, which is trained and fine-tuned with our real-world dataset for landmark recognition.
Experimental results demonstrate that our proposed framework performs better than existing anchorbased DV-Hop algorithms and competes with the most efficient vision-based algorithms in terms of localization error (RMSE)
arXiv Detail & Related papers (2024-02-19T21:20:56Z) - SpatialRank: Urban Event Ranking with NDCG Optimization on
Spatiotemporal Data [55.609946936979036]
We propose a novel spatial event ranking approach named SpatialRank.
We show that SpatialRank can effectively identify the top riskiest locations of crimes and traffic accidents.
arXiv Detail & Related papers (2023-09-30T06:20:21Z) - Vanishing Point Estimation in Uncalibrated Images with Prior Gravity
Direction [82.72686460985297]
We tackle the problem of estimating a Manhattan frame.
We derive two new 2-line solvers, one of which does not suffer from singularities affecting existing solvers.
We also design a new non-minimal method, running on an arbitrary number of lines, to boost the performance in local optimization.
arXiv Detail & Related papers (2023-08-21T13:03:25Z) - OpenOccupancy: A Large Scale Benchmark for Surrounding Semantic
Occupancy Perception [73.05425657479704]
We propose OpenOccupancy, which is the first surrounding semantic occupancy perception benchmark.
We extend the large-scale nuScenes dataset with dense semantic occupancy annotations.
Considering the complexity of surrounding occupancy perception, we propose the Cascade Occupancy Network (CONet) to refine the coarse prediction.
arXiv Detail & Related papers (2023-03-07T15:43:39Z) - Robust Monocular Localization in Sparse HD Maps Leveraging Multi-Task
Uncertainty Estimation [28.35592701148056]
We present a novel monocular localization approach based on a sliding-window pose graph.
We propose an efficient multi-task uncertainty-aware perception module.
Our approach enables robust and accurate 6D localization in challenging urban scenarios.
arXiv Detail & Related papers (2021-10-20T13:46:15Z) - CertainNet: Sampling-free Uncertainty Estimation for Object Detection [65.28989536741658]
Estimating the uncertainty of a neural network plays a fundamental role in safety-critical settings.
In this work, we propose a novel sampling-free uncertainty estimation method for object detection.
We call it CertainNet, and it is the first to provide separate uncertainties for each output signal: objectness, class, location and size.
arXiv Detail & Related papers (2021-10-04T17:59:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.