Vanishing Point Estimation in Uncalibrated Images with Prior Gravity
Direction
- URL: http://arxiv.org/abs/2308.10694v1
- Date: Mon, 21 Aug 2023 13:03:25 GMT
- Title: Vanishing Point Estimation in Uncalibrated Images with Prior Gravity
Direction
- Authors: R\'emi Pautrat, Shaohui Liu, Petr Hruby, Marc Pollefeys, Daniel Barath
- Abstract summary: We tackle the problem of estimating a Manhattan frame.
We derive two new 2-line solvers, one of which does not suffer from singularities affecting existing solvers.
We also design a new non-minimal method, running on an arbitrary number of lines, to boost the performance in local optimization.
- Score: 82.72686460985297
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We tackle the problem of estimating a Manhattan frame, i.e. three orthogonal
vanishing points, and the unknown focal length of the camera, leveraging a
prior vertical direction. The direction can come from an Inertial Measurement
Unit that is a standard component of recent consumer devices, e.g.,
smartphones. We provide an exhaustive analysis of minimal line configurations
and derive two new 2-line solvers, one of which does not suffer from
singularities affecting existing solvers. Additionally, we design a new
non-minimal method, running on an arbitrary number of lines, to boost the
performance in local optimization. Combining all solvers in a hybrid robust
estimator, our method achieves increased accuracy even with a rough prior.
Experiments on synthetic and real-world datasets demonstrate the superior
accuracy of our method compared to the state of the art, while having
comparable runtimes. We further demonstrate the applicability of our solvers
for relative rotation estimation. The code is available at
https://github.com/cvg/VP-Estimation-with-Prior-Gravity.
Related papers
- SPARE: Symmetrized Point-to-Plane Distance for Robust Non-Rigid Registration [76.40993825836222]
We propose SPARE, a novel formulation that utilizes a symmetrized point-to-plane distance for robust non-rigid registration.
The proposed method greatly improves the accuracy of non-rigid registration problems and maintains relatively high solution efficiency.
arXiv Detail & Related papers (2024-05-30T15:55:04Z) - An Accurate and Real-time Relative Pose Estimation from Triple Point-line Images by Decoupling Rotation and Translation [10.05584976985694]
3D-2D constraints provided by line features have been widely used in Visual Odometry (VO) and Structure-from-Motion (SfM) systems.
We propose a novel three-view pose solver based on rotation-translation decoupled estimation.
arXiv Detail & Related papers (2024-03-18T10:21:05Z) - P2O-Calib: Camera-LiDAR Calibration Using Point-Pair Spatial Occlusion
Relationship [1.6921147361216515]
We propose a novel target-less calibration approach based on the 2D-3D edge point extraction using the occlusion relationship in 3D space.
Our method achieves low error and high robustness that can contribute to the practical applications relying on high-quality Camera-LiDAR calibration.
arXiv Detail & Related papers (2023-11-04T14:32:55Z) - Cryo-forum: A framework for orientation recovery with uncertainty
measure with the application in cryo-EM image analysis [0.0]
This paper introduces a novel approach that uses a 10-dimensional feature vector to represent the orientation and applies a Quadratically-Constrained Quadratic Program to derive the predicted orientation as a unit quaternion, supplemented by an uncertainty metric.
Our numerical analysis demonstrates that our methodology effectively recovers orientations from 2D cryo-EM images in an end-to-end manner. Importantly, the inclusion of uncertainty allows for direct clean-up of the dataset at the 3D level.
arXiv Detail & Related papers (2023-07-19T09:09:24Z) - Detecting Rotated Objects as Gaussian Distributions and Its 3-D
Generalization [81.29406957201458]
Existing detection methods commonly use a parameterized bounding box (BBox) to model and detect (horizontal) objects.
We argue that such a mechanism has fundamental limitations in building an effective regression loss for rotation detection.
We propose to model the rotated objects as Gaussian distributions.
We extend our approach from 2-D to 3-D with a tailored algorithm design to handle the heading estimation.
arXiv Detail & Related papers (2022-09-22T07:50:48Z) - E-Graph: Minimal Solution for Rigid Rotation with Extensibility Graphs [61.552125054227595]
A new minimal solution is proposed to solve relative rotation estimation between two images without overlapping areas.
Based on E-Graph, the rotation estimation problem becomes simpler and more elegant.
We embed our rotation estimation strategy into a complete camera tracking and mapping system which obtains 6-DoF camera poses and a dense 3D mesh model.
arXiv Detail & Related papers (2022-07-20T16:11:48Z) - Globally Optimal Relative Pose Estimation with Gravity Prior [63.74377065002315]
Smartphones, tablets and camera systems used, e.g., in cars and UAVs, are typically equipped with IMUs that can measure the gravity vector accurately.
We propose a novel globally optimal solver, minimizing the algebraic error in the least-squares sense, to estimate the relative pose in the over-determined pose.
The proposed solvers are compared with the state-of-the-art ones on four real-world datasets with approx. 50000 image pairs in total.
arXiv Detail & Related papers (2020-12-01T13:09:59Z) - Robust 6D Object Pose Estimation by Learning RGB-D Features [59.580366107770764]
We propose a novel discrete-continuous formulation for rotation regression to resolve this local-optimum problem.
We uniformly sample rotation anchors in SO(3), and predict a constrained deviation from each anchor to the target, as well as uncertainty scores for selecting the best prediction.
Experiments on two benchmarks: LINEMOD and YCB-Video, show that the proposed method outperforms state-of-the-art approaches.
arXiv Detail & Related papers (2020-02-29T06:24:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.