Knowledge-Enhanced Top-K Recommendation in Poincar\'e Ball
- URL: http://arxiv.org/abs/2101.04852v2
- Date: Fri, 29 Jan 2021 20:41:23 GMT
- Title: Knowledge-Enhanced Top-K Recommendation in Poincar\'e Ball
- Authors: Chen Ma, Liheng Ma, Yingxue Zhang, Haolun Wu, Xue Liu and Mark Coates
- Abstract summary: We propose a recommendation model in the hyperbolic space, which facilitates the learning of the hierarchical structure of knowledge graphs.
A hyperbolic attention network is employed to determine the relative importances of neighboring entities of a certain item.
We show that the proposed model outperforms the best existing models by 2-16% in terms of NDCG@K on Top-K recommendation.
- Score: 33.90069123451581
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Personalized recommender systems are increasingly important as more content
and services become available and users struggle to identify what might
interest them. Thanks to the ability for providing rich information, knowledge
graphs (KGs) are being incorporated to enhance the recommendation performance
and interpretability. To effectively make use of the knowledge graph, we
propose a recommendation model in the hyperbolic space, which facilitates the
learning of the hierarchical structure of knowledge graphs. Furthermore, a
hyperbolic attention network is employed to determine the relative importances
of neighboring entities of a certain item. In addition, we propose an adaptive
and fine-grained regularization mechanism to adaptively regularize items and
their neighboring representations. Via a comparison using three real-world
datasets with state-of-the-art methods, we show that the proposed model
outperforms the best existing models by 2-16% in terms of NDCG@K on Top-K
recommendation.
Related papers
- A Personalized Recommender System Based-on Knowledge Graph Embeddings [0.0]
The recent emergence in interest for using knowledge graphs as a form of information modeling has led to their increased adoption in recommender systems.
By incorporating relevant users and relevant items into the knowledge graph, these systems can better capture the implicit connections between them and provide more accurate recommendations.
arXiv Detail & Related papers (2023-07-20T08:14:06Z) - Ripple Knowledge Graph Convolutional Networks For Recommendation Systems [10.472910821647703]
This paper introduces an end-to-end deep learning model, named RKGCN, which dynamically analyses each user's preferences and makes a recommendation of suitable items.
It combines knowledge graphs on both the item side and user side to enrich their representations to maximize the utilization of the abundant information in knowledge graphs.
arXiv Detail & Related papers (2023-05-02T01:35:57Z) - Knowledge Graph Contrastive Learning for Recommendation [32.918864602360884]
We design a general Knowledge Graph Contrastive Learning framework to alleviate the information noise for knowledge graph-enhanced recommender systems.
Specifically, we propose a knowledge graph augmentation schema to suppress KG noise in information aggregation.
We exploit additional supervision signals from the KG augmentation process to guide a cross-view contrastive learning paradigm.
arXiv Detail & Related papers (2022-05-02T15:24:53Z) - Reinforcement Learning based Path Exploration for Sequential Explainable
Recommendation [57.67616822888859]
We propose a novel Temporal Meta-path Guided Explainable Recommendation leveraging Reinforcement Learning (TMER-RL)
TMER-RL utilizes reinforcement item-item path modelling between consecutive items with attention mechanisms to sequentially model dynamic user-item evolutions on dynamic knowledge graph for explainable recommendation.
Extensive evaluations of TMER on two real-world datasets show state-of-the-art performance compared against recent strong baselines.
arXiv Detail & Related papers (2021-11-24T04:34:26Z) - Conditional Attention Networks for Distilling Knowledge Graphs in
Recommendation [74.14009444678031]
We propose Knowledge-aware Conditional Attention Networks (KCAN) to incorporate knowledge graph into a recommender system.
We use a knowledge-aware attention propagation manner to obtain the node representation first, which captures the global semantic similarity on the user-item network and the knowledge graph.
Then, by applying a conditional attention aggregation on the subgraph, we refine the knowledge graph to obtain target-specific node representations.
arXiv Detail & Related papers (2021-11-03T09:40:43Z) - Recommender systems based on graph embedding techniques: A comprehensive
review [9.871096870138043]
This article systematically retrospects graph embedding-based recommendation from embedding techniques for bipartite graphs, general graphs, and knowledge graphs.
Comparing several representative graph embedding-based recommendation models with the most common-used conventional recommendation models, on simulations, manifests that the conventional models overall outperform the graph embedding-based ones in predicting implicit user-item interactions.
arXiv Detail & Related papers (2021-09-20T14:42:39Z) - Attentive Knowledge-aware Graph Convolutional Networks with
Collaborative Guidance for Recommendation [36.95691423601792]
We propose attentive Knowledge-aware convolutional networks with Collaborative Guidance for personalized Recommendation (CG-KGR)
CG-KGR is a novel knowledge-aware recommendation model that enables ample and coherent learning of KGs and user-item interactions.
We conduct extensive experiments on four real-world datasets over two recommendation tasks.
arXiv Detail & Related papers (2021-09-05T11:55:20Z) - How Knowledge Graph and Attention Help? A Quantitative Analysis into
Bag-level Relation Extraction [66.09605613944201]
We quantitatively evaluate the effect of attention and Knowledge Graph on bag-level relation extraction (RE)
We find that (1) higher attention accuracy may lead to worse performance as it may harm the model's ability to extract entity mention features; (2) the performance of attention is largely influenced by various noise distribution patterns; and (3) KG-enhanced attention indeed improves RE performance, while not through enhanced attention but by incorporating entity prior.
arXiv Detail & Related papers (2021-07-26T09:38:28Z) - Graph Learning based Recommender Systems: A Review [111.43249652335555]
Graph Learning based Recommender Systems (GLRS) employ advanced graph learning approaches to model users' preferences and intentions as well as items' characteristics for recommendations.
We provide a systematic review of GLRS, by discussing how they extract important knowledge from graph-based representations to improve the accuracy, reliability and explainability of the recommendations.
arXiv Detail & Related papers (2021-05-13T14:50:45Z) - A Survey on Neural Recommendation: From Collaborative Filtering to
Content and Context Enriched Recommendation [70.69134448863483]
Research in recommendation has shifted to inventing new recommender models based on neural networks.
In recent years, we have witnessed significant progress in developing neural recommender models.
arXiv Detail & Related papers (2021-04-27T08:03:52Z) - Learning Intents behind Interactions with Knowledge Graph for
Recommendation [93.08709357435991]
Knowledge graph (KG) plays an increasingly important role in recommender systems.
Existing GNN-based models fail to identify user-item relation at a fine-grained level of intents.
We propose a new model, Knowledge Graph-based Intent Network (KGIN)
arXiv Detail & Related papers (2021-02-14T03:21:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.