A Personalized Recommender System Based-on Knowledge Graph Embeddings
- URL: http://arxiv.org/abs/2307.10680v1
- Date: Thu, 20 Jul 2023 08:14:06 GMT
- Title: A Personalized Recommender System Based-on Knowledge Graph Embeddings
- Authors: Ngoc Luyen Le (Heudiasyc), Marie-H\'el\`ene Abel (Heudiasyc), Philippe
Gouspillou
- Abstract summary: The recent emergence in interest for using knowledge graphs as a form of information modeling has led to their increased adoption in recommender systems.
By incorporating relevant users and relevant items into the knowledge graph, these systems can better capture the implicit connections between them and provide more accurate recommendations.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Knowledge graphs have proven to be effective for modeling entities and their
relationships through the use of ontologies. The recent emergence in interest
for using knowledge graphs as a form of information modeling has led to their
increased adoption in recommender systems. By incorporating users and items
into the knowledge graph, these systems can better capture the implicit
connections between them and provide more accurate recommendations. In this
paper, we investigate and propose the construction of a personalized
recommender system via knowledge graphs embedding applied to the vehicle
purchase/sale domain. The results of our experimentation demonstrate the
efficacy of the proposed method in providing relevant recommendations that are
consistent with individual users.
Related papers
- Preference and Concurrence Aware Bayesian Graph Neural Networks for
Recommender Systems [5.465420718331109]
Graph-based collaborative filtering methods have prevailing performance for recommender systems.
We propose an efficient generative model that jointly considers the preferences of users, the concurrence of items and some important graph structure information.
arXiv Detail & Related papers (2023-11-30T11:49:33Z) - Embedding in Recommender Systems: A Survey [67.67966158305603]
A crucial aspect is embedding techniques that covert the high-dimensional discrete features, such as user and item IDs, into low-dimensional continuous vectors.
Applying embedding techniques captures complex entity relationships and has spurred substantial research.
This survey covers embedding methods like collaborative filtering, self-supervised learning, and graph-based techniques.
arXiv Detail & Related papers (2023-10-28T06:31:06Z) - Conditional Attention Networks for Distilling Knowledge Graphs in
Recommendation [74.14009444678031]
We propose Knowledge-aware Conditional Attention Networks (KCAN) to incorporate knowledge graph into a recommender system.
We use a knowledge-aware attention propagation manner to obtain the node representation first, which captures the global semantic similarity on the user-item network and the knowledge graph.
Then, by applying a conditional attention aggregation on the subgraph, we refine the knowledge graph to obtain target-specific node representations.
arXiv Detail & Related papers (2021-11-03T09:40:43Z) - Recommender systems based on graph embedding techniques: A comprehensive
review [9.871096870138043]
This article systematically retrospects graph embedding-based recommendation from embedding techniques for bipartite graphs, general graphs, and knowledge graphs.
Comparing several representative graph embedding-based recommendation models with the most common-used conventional recommendation models, on simulations, manifests that the conventional models overall outperform the graph embedding-based ones in predicting implicit user-item interactions.
arXiv Detail & Related papers (2021-09-20T14:42:39Z) - Rating and aspect-based opinion graph embeddings for explainable
recommendations [69.9674326582747]
We propose to exploit embeddings extracted from graphs that combine information from ratings and aspect-based opinions expressed in textual reviews.
We then adapt and evaluate state-of-the-art graph embedding techniques over graphs generated from Amazon and Yelp reviews on six domains, outperforming baseline recommenders.
arXiv Detail & Related papers (2021-07-07T14:07:07Z) - Graphing else matters: exploiting aspect opinions and ratings in
explainable graph-based recommendations [66.83527496838937]
We propose to exploit embeddings extracted from graphs that combine information from ratings and aspect-based opinions expressed in textual reviews.
We then adapt and evaluate state-of-the-art graph embedding techniques over graphs generated from Amazon and Yelp reviews on six domains.
Our approach has the advantage of providing explanations which leverage aspect-based opinions given by users about recommended items.
arXiv Detail & Related papers (2021-07-07T13:57:28Z) - A Survey on Neural Recommendation: From Collaborative Filtering to
Content and Context Enriched Recommendation [70.69134448863483]
Research in recommendation has shifted to inventing new recommender models based on neural networks.
In recent years, we have witnessed significant progress in developing neural recommender models.
arXiv Detail & Related papers (2021-04-27T08:03:52Z) - Knowledge-Enhanced Top-K Recommendation in Poincar\'e Ball [33.90069123451581]
We propose a recommendation model in the hyperbolic space, which facilitates the learning of the hierarchical structure of knowledge graphs.
A hyperbolic attention network is employed to determine the relative importances of neighboring entities of a certain item.
We show that the proposed model outperforms the best existing models by 2-16% in terms of NDCG@K on Top-K recommendation.
arXiv Detail & Related papers (2021-01-13T03:16:50Z) - Application of Knowledge Graphs to Provide Side Information for Improved
Recommendation Accuracy [2.8360662552057323]
We present a new generic recommendation systems framework, that integrates knowledge graphs into the recommendation pipeline.
Our framework supports different knowledge graph representation formats, and facilitates format conversion, merging and information extraction needed for training recommendation methods.
arXiv Detail & Related papers (2021-01-07T16:52:05Z) - A Survey on Knowledge Graph-Based Recommender Systems [65.50486149662564]
We conduct a systematical survey of knowledge graph-based recommender systems.
We focus on how the papers utilize the knowledge graph for accurate and explainable recommendation.
We introduce datasets used in these works.
arXiv Detail & Related papers (2020-02-28T02:26:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.