Video action recognition for lane-change classification and prediction
of surrounding vehicles
- URL: http://arxiv.org/abs/2101.05043v1
- Date: Wed, 13 Jan 2021 13:25:00 GMT
- Title: Video action recognition for lane-change classification and prediction
of surrounding vehicles
- Authors: Mahdi Biparva, David Fern\'andez-Llorca, Rub\'en Izquierdo-Gonzalo,
John K. Tsotsos
- Abstract summary: Lane-change recognition and prediction tasks are posed as video action recognition problems.
We study the influence of context and observation horizons on performance, and different prediction horizons are analyzed.
The obtained results clearly demonstrate the potential of these methodologies to serve as robust predictors of future lane-changes of surrounding vehicles.
- Score: 12.127050913280925
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In highway scenarios, an alert human driver will typically anticipate early
cut-in/cut-out maneuvers of surrounding vehicles using visual cues mainly.
Autonomous vehicles must anticipate these situations at an early stage too, to
increase their safety and efficiency. In this work, lane-change recognition and
prediction tasks are posed as video action recognition problems. Up to four
different two-stream-based approaches, that have been successfully applied to
address human action recognition, are adapted here by stacking visual cues from
forward-looking video cameras to recognize and anticipate lane-changes of
target vehicles. We study the influence of context and observation horizons on
performance, and different prediction horizons are analyzed. The different
models are trained and evaluated using the PREVENTION dataset. The obtained
results clearly demonstrate the potential of these methodologies to serve as
robust predictors of future lane-changes of surrounding vehicles proving an
accuracy higher than 90% in time horizons of between 1-2 seconds.
Related papers
- BEVSeg2TP: Surround View Camera Bird's-Eye-View Based Joint Vehicle
Segmentation and Ego Vehicle Trajectory Prediction [4.328789276903559]
Trajectory prediction is a key task for vehicle autonomy.
There is a growing interest in learning-based trajectory prediction.
We show that there is the potential to improve the performance of perception.
arXiv Detail & Related papers (2023-12-20T15:02:37Z) - Multi-Vehicle Trajectory Prediction at Intersections using State and
Intention Information [50.40632021583213]
Traditional approaches to prediction of future trajectory of road agents rely on knowing information about their past trajectory.
This work instead relies on having knowledge of the current state and intended direction to make predictions for multiple vehicles at intersections.
Message passing of this information between the vehicles provides each one of them a more holistic overview of the environment.
arXiv Detail & Related papers (2023-01-06T15:13:23Z) - Policy Pre-training for End-to-end Autonomous Driving via
Self-supervised Geometric Modeling [96.31941517446859]
We propose PPGeo (Policy Pre-training via Geometric modeling), an intuitive and straightforward fully self-supervised framework curated for the policy pretraining in visuomotor driving.
We aim at learning policy representations as a powerful abstraction by modeling 3D geometric scenes on large-scale unlabeled and uncalibrated YouTube driving videos.
In the first stage, the geometric modeling framework generates pose and depth predictions simultaneously, with two consecutive frames as input.
In the second stage, the visual encoder learns driving policy representation by predicting the future ego-motion and optimizing with the photometric error based on current visual observation only.
arXiv Detail & Related papers (2023-01-03T08:52:49Z) - Early Lane Change Prediction for Automated Driving Systems Using
Multi-Task Attention-based Convolutional Neural Networks [8.60064151720158]
Lane change (LC) is one of the safety-critical manoeuvres in highway driving.
reliably predicting such manoeuvre in advance is critical for the safe and comfortable operation of automated driving systems.
This paper proposes a novel multi-task model to simultaneously estimate the likelihood of LC manoeuvres and the time-to-lane-change.
arXiv Detail & Related papers (2021-09-22T13:59:27Z) - Safety-aware Motion Prediction with Unseen Vehicles for Autonomous
Driving [104.32241082170044]
We study a new task, safety-aware motion prediction with unseen vehicles for autonomous driving.
Unlike the existing trajectory prediction task for seen vehicles, we aim at predicting an occupancy map.
Our approach is the first one that can predict the existence of unseen vehicles in most cases.
arXiv Detail & Related papers (2021-09-03T13:33:33Z) - Vehicle trajectory prediction in top-view image sequences based on deep
learning method [1.181206257787103]
Estimating and predicting surrounding vehicles' movement is essential for an automated vehicle and advanced safety systems.
A model with low computational complexity is proposed, which is trained by images taken from the road's aerial image.
The proposed model can predict the vehicle's future path in any freeway only by viewing the images related to the history of the target vehicle's movement and its neighbors.
arXiv Detail & Related papers (2021-02-02T20:48:19Z) - Safety-Oriented Pedestrian Motion and Scene Occupancy Forecasting [91.69900691029908]
We advocate for predicting both the individual motions as well as the scene occupancy map.
We propose a Scene-Actor Graph Neural Network (SA-GNN) which preserves the relative spatial information of pedestrians.
On two large-scale real-world datasets, we showcase that our scene-occupancy predictions are more accurate and better calibrated than those from state-of-the-art motion forecasting methods.
arXiv Detail & Related papers (2021-01-07T06:08:21Z) - The PREVENTION Challenge: How Good Are Humans Predicting Lane Changes? [0.0]
In this paper, human's ability to predict lane changes in highway scenarios is analyzed.
Users had to indicate the moment at which they considered that a lane change maneuver was taking place.
Results retrieved have been carefully analyzed and compared to ground truth labels.
arXiv Detail & Related papers (2020-09-11T10:47:07Z) - Two-Stream Networks for Lane-Change Prediction of Surrounding Vehicles [8.828423067460644]
In highway scenarios, an alert human driver will typically anticipate early cut-in and cut-out maneuvers surrounding vehicles using only visual cues.
To deal with lane-change recognition and prediction of surrounding vehicles, we pose the problem as an action recognition/prediction problem by stacking visual cues from video cameras.
Two video action recognition approaches are analyzed: two-stream convolutional networks and multiplier networks.
arXiv Detail & Related papers (2020-08-25T07:59:15Z) - What-If Motion Prediction for Autonomous Driving [58.338520347197765]
Viable solutions must account for both the static geometric context, such as road lanes, and dynamic social interactions arising from multiple actors.
We propose a recurrent graph-based attentional approach with interpretable geometric (actor-lane) and social (actor-actor) relationships.
Our model can produce diverse predictions conditioned on hypothetical or "what-if" road lanes and multi-actor interactions.
arXiv Detail & Related papers (2020-08-24T17:49:30Z) - Driver Intention Anticipation Based on In-Cabin and Driving Scene
Monitoring [52.557003792696484]
We present a framework for the detection of the drivers' intention based on both in-cabin and traffic scene videos.
Our framework achieves a prediction with the accuracy of 83.98% and F1-score of 84.3%.
arXiv Detail & Related papers (2020-06-20T11:56:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.