Early Lane Change Prediction for Automated Driving Systems Using
Multi-Task Attention-based Convolutional Neural Networks
- URL: http://arxiv.org/abs/2109.10742v1
- Date: Wed, 22 Sep 2021 13:59:27 GMT
- Title: Early Lane Change Prediction for Automated Driving Systems Using
Multi-Task Attention-based Convolutional Neural Networks
- Authors: Sajjad Mozaffari, Eduardo Arnold, Mehrdad Dianati and Saber Fallah
- Abstract summary: Lane change (LC) is one of the safety-critical manoeuvres in highway driving.
reliably predicting such manoeuvre in advance is critical for the safe and comfortable operation of automated driving systems.
This paper proposes a novel multi-task model to simultaneously estimate the likelihood of LC manoeuvres and the time-to-lane-change.
- Score: 8.60064151720158
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Lane change (LC) is one of the safety-critical manoeuvres in highway driving
according to various road accident records. Thus, reliably predicting such
manoeuvre in advance is critical for the safe and comfortable operation of
automated driving systems. The majority of previous studies rely on detecting a
manoeuvre that has been already started, rather than predicting the manoeuvre
in advance. Furthermore, most of the previous works do not estimate the key
timings of the manoeuvre (e.g., crossing time), which can actually yield more
useful information for the decision making in the ego vehicle. To address these
shortcomings, this paper proposes a novel multi-task model to simultaneously
estimate the likelihood of LC manoeuvres and the time-to-lane-change (TTLC). In
both tasks, an attention-based convolutional neural network (CNN) is used as a
shared feature extractor from a bird's eye view representation of the driving
environment. The spatial attention used in the CNN model improves the feature
extraction process by focusing on the most relevant areas of the surrounding
environment. In addition, two novel curriculum learning schemes are employed to
train the proposed approach. The extensive evaluation and comparative analysis
of the proposed method in existing benchmark datasets show that the proposed
method outperforms state-of-the-art LC prediction models, particularly
considering long-term prediction performance.
Related papers
- Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - A Novel Deep Neural Network for Trajectory Prediction in Automated
Vehicles Using Velocity Vector Field [12.067838086415833]
This paper proposes a novel technique for trajectory prediction that combines a data-driven learning-based method with a velocity vector field (VVF) generated from a nature-inspired concept.
The accuracy remains consistent with decreasing observation windows which alleviates the requirement of a long history of past observations for accurate trajectory prediction.
arXiv Detail & Related papers (2023-09-19T22:14:52Z) - Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving [68.95178518732965]
A self-driving vehicle (SDV) must be able to perceive its surroundings and predict the future behavior of other traffic participants.
Existing works either perform object detection followed by trajectory of the detected objects, or predict dense occupancy and flow grids for the whole scene.
This motivates our unified approach to perception and future prediction that implicitly represents occupancy and flow over time with a single neural network.
arXiv Detail & Related papers (2023-08-02T23:39:24Z) - Trajectory Prediction with Observations of Variable-Length for Motion
Planning in Highway Merging scenarios [5.193470362635256]
Existing methods cannot initiate prediction for a vehicle unless observed for a fixed duration of two or more seconds.
This paper proposes a novel transformer-based trajectory prediction approach, specifically trained to handle any observation length larger than one frame.
We perform a comprehensive evaluation of the proposed method using two large-scale highway trajectory datasets.
arXiv Detail & Related papers (2023-06-08T18:03:48Z) - FBLNet: FeedBack Loop Network for Driver Attention Prediction [75.83518507463226]
Nonobjective driving experience is difficult to model.
In this paper, we propose a FeedBack Loop Network (FBLNet) which attempts to model the driving experience accumulation procedure.
Under the guidance of the incremental knowledge, our model fuses the CNN feature and Transformer feature that are extracted from the input image to predict driver attention.
arXiv Detail & Related papers (2022-12-05T08:25:09Z) - Safety-aware Motion Prediction with Unseen Vehicles for Autonomous
Driving [104.32241082170044]
We study a new task, safety-aware motion prediction with unseen vehicles for autonomous driving.
Unlike the existing trajectory prediction task for seen vehicles, we aim at predicting an occupancy map.
Our approach is the first one that can predict the existence of unseen vehicles in most cases.
arXiv Detail & Related papers (2021-09-03T13:33:33Z) - Divide-and-Conquer for Lane-Aware Diverse Trajectory Prediction [71.97877759413272]
Trajectory prediction is a safety-critical tool for autonomous vehicles to plan and execute actions.
Recent methods have achieved strong performances using Multi-Choice Learning objectives like winner-takes-all (WTA) or best-of-many.
Our work addresses two key challenges in trajectory prediction, learning outputs, and better predictions by imposing constraints using driving knowledge.
arXiv Detail & Related papers (2021-04-16T17:58:56Z) - Two-Stream Networks for Lane-Change Prediction of Surrounding Vehicles [8.828423067460644]
In highway scenarios, an alert human driver will typically anticipate early cut-in and cut-out maneuvers surrounding vehicles using only visual cues.
To deal with lane-change recognition and prediction of surrounding vehicles, we pose the problem as an action recognition/prediction problem by stacking visual cues from video cameras.
Two video action recognition approaches are analyzed: two-stream convolutional networks and multiplier networks.
arXiv Detail & Related papers (2020-08-25T07:59:15Z) - Traffic congestion anomaly detection and prediction using deep learning [6.370406399003785]
Congestion prediction is a major priority for traffic management centres around the world to ensure timely incident response handling.
The increasing amounts of generated traffic data have been used to train machine learning predictors for traffic, but this is a challenging task due to inter-dependencies of traffic flow both in time and space.
We show that our deep learning models consistently outperform traditional methods, and we conduct a comparative analysis of the optimal time horizon of historical data required to predict traffic flow at different time points in the future.
arXiv Detail & Related papers (2020-06-23T08:49:46Z) - Deep Learning with Attention Mechanism for Predicting Driver Intention
at Intersection [2.1699196439348265]
The proposed solution is promising to be applied in advanced driver assistance systems (ADAS) and as part of active safety system of autonomous vehicles.
The performance of the proposed approach is evaluated on a naturalistic driving dataset and results show that our method achieves high accuracy as well as outperforms other methods.
arXiv Detail & Related papers (2020-06-10T16:12:00Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
Roads have well defined geometries, topologies, and traffic rules.
In this paper we propose to incorporate structured priors as a loss function.
We demonstrate the effectiveness of our approach on real-world self-driving datasets.
arXiv Detail & Related papers (2020-06-04T03:56:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.