Multiscale regression on unknown manifolds
- URL: http://arxiv.org/abs/2101.05119v1
- Date: Wed, 13 Jan 2021 15:14:31 GMT
- Title: Multiscale regression on unknown manifolds
- Authors: Wenjing Liao, Mauro Maggioni and Stefano Vigogna
- Abstract summary: We construct low-dimensional coordinates on $mathcalM$ at multiple scales and perform multiscale regression by local fitting.
We analyze the generalization error of our method by proving finite sample bounds in high probability on rich classes of priors.
Our algorithm has quasilinear complexity in the sample size, with constants linear in $D$ and exponential in $d$.
- Score: 13.752772802705978
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the regression problem of estimating functions on $\mathbb{R}^D$
but supported on a $d$-dimensional manifold $ \mathcal{M} \subset \mathbb{R}^D
$ with $ d \ll D $. Drawing ideas from multi-resolution analysis and nonlinear
approximation, we construct low-dimensional coordinates on $\mathcal{M}$ at
multiple scales, and perform multiscale regression by local polynomial fitting.
We propose a data-driven wavelet thresholding scheme that automatically adapts
to the unknown regularity of the function, allowing for efficient estimation of
functions exhibiting nonuniform regularity at different locations and scales.
We analyze the generalization error of our method by proving finite sample
bounds in high probability on rich classes of priors. Our estimator attains
optimal learning rates (up to logarithmic factors) as if the function was
defined on a known Euclidean domain of dimension $d$, instead of an unknown
manifold embedded in $\mathbb{R}^D$. The implemented algorithm has quasilinear
complexity in the sample size, with constants linear in $D$ and exponential in
$d$. Our work therefore establishes a new framework for regression on
low-dimensional sets embedded in high dimensions, with fast implementation and
strong theoretical guarantees.
Related papers
- Universal Online Learning with Gradient Variations: A Multi-layer Online Ensemble Approach [57.92727189589498]
We propose an online convex optimization approach with two different levels of adaptivity.
We obtain $mathcalO(log V_T)$, $mathcalO(d log V_T)$ and $hatmathcalO(sqrtV_T)$ regret bounds for strongly convex, exp-concave and convex loss functions.
arXiv Detail & Related papers (2023-07-17T09:55:35Z) - Learning High-Dimensional Nonparametric Differential Equations via
Multivariate Occupation Kernel Functions [0.31317409221921133]
Learning a nonparametric system of ordinary differential equations requires learning $d$ functions of $d$ variables.
Explicit formulations scale quadratically in $d$ unless additional knowledge about system properties, such as sparsity and symmetries, is available.
We propose a linear approach to learning using the implicit formulation provided by vector-valued Reproducing Kernel Hilbert Spaces.
arXiv Detail & Related papers (2023-06-16T21:49:36Z) - Low-complexity subspace-descent over symmetric positive definite
manifold [9.346050098365648]
We develop low-complexity algorithms for the minimization of functions over the symmetric positive definite (SPD) manifold.
The proposed approach utilizes carefully chosen subspaces that allow the update to be written as a product of the Cholesky factor of the iterate and a sparse matrix.
arXiv Detail & Related papers (2023-05-03T11:11:46Z) - Kernel-based off-policy estimation without overlap: Instance optimality
beyond semiparametric efficiency [53.90687548731265]
We study optimal procedures for estimating a linear functional based on observational data.
For any convex and symmetric function class $mathcalF$, we derive a non-asymptotic local minimax bound on the mean-squared error.
arXiv Detail & Related papers (2023-01-16T02:57:37Z) - Generalization Bounds for Stochastic Gradient Descent via Localized
$\varepsilon$-Covers [16.618918548497223]
We propose a new covering technique localized for the trajectories of SGD.
This localization provides an algorithm-specific clustering measured by the bounds number.
We derive these results in various contexts and improve the known state-of-the-art label rates.
arXiv Detail & Related papers (2022-09-19T12:11:07Z) - Manifold Free Riemannian Optimization [4.484251538832438]
A principled framework for solving optimization problems with a smooth manifold $mathcalM$ is proposed.
We use a noiseless sample set of the cost function $(x_i, y_i)in mathcalM times mathbbR$ and the intrinsic dimension of the manifold $mathcalM$.
arXiv Detail & Related papers (2022-09-07T16:19:06Z) - Finding Global Minima via Kernel Approximations [90.42048080064849]
We consider the global minimization of smooth functions based solely on function evaluations.
In this paper, we consider an approach that jointly models the function to approximate and finds a global minimum.
arXiv Detail & Related papers (2020-12-22T12:59:30Z) - Optimal Robust Linear Regression in Nearly Linear Time [97.11565882347772]
We study the problem of high-dimensional robust linear regression where a learner is given access to $n$ samples from the generative model $Y = langle X,w* rangle + epsilon$
We propose estimators for this problem under two settings: (i) $X$ is L4-L2 hypercontractive, $mathbbE [XXtop]$ has bounded condition number and $epsilon$ has bounded variance and (ii) $X$ is sub-Gaussian with identity second moment and $epsilon$ is
arXiv Detail & Related papers (2020-07-16T06:44:44Z) - Piecewise Linear Regression via a Difference of Convex Functions [50.89452535187813]
We present a new piecewise linear regression methodology that utilizes fitting a difference of convex functions (DC functions) to the data.
We empirically validate the method, showing it to be practically implementable, and to have comparable performance to existing regression/classification methods on real-world datasets.
arXiv Detail & Related papers (2020-07-05T18:58:47Z) - Reinforcement Learning with General Value Function Approximation:
Provably Efficient Approach via Bounded Eluder Dimension [124.7752517531109]
We establish a provably efficient reinforcement learning algorithm with general value function approximation.
We show that our algorithm achieves a regret bound of $widetildeO(mathrmpoly(dH)sqrtT)$ where $d$ is a complexity measure.
Our theory generalizes recent progress on RL with linear value function approximation and does not make explicit assumptions on the model of the environment.
arXiv Detail & Related papers (2020-05-21T17:36:09Z) - Efficient algorithms for multivariate shape-constrained convex
regression problems [9.281671380673306]
We prove that the least squares estimator is computable via solving a constrained convex programming (QP) problem with $(n+1)d$ variables and at least $n(n-1)$ linear inequality constraints.
For solving the generally very large-scale convex QP, we design two efficient algorithms, one is the symmetric Gauss-Seidel based alternating direction method of multipliers (tt sGS-ADMM), and the other is the proximal augmented Lagrangian method (tt pALM) with the subproblems solved by the semismooth Newton method (t
arXiv Detail & Related papers (2020-02-26T11:18:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.