$p$-Adic Polynomial Regression as Alternative to Neural Network for Approximating $p$-Adic Functions of Many Variables
- URL: http://arxiv.org/abs/2503.23488v2
- Date: Tue, 01 Apr 2025 08:48:08 GMT
- Title: $p$-Adic Polynomial Regression as Alternative to Neural Network for Approximating $p$-Adic Functions of Many Variables
- Authors: Alexander P. Zubarev,
- Abstract summary: A regression model is constructed that allows approximating continuous functions with any degree of accuracy.<n>The proposed model can be considered as a simple alternative to possible $p$-adic models based on neural network architecture.
- Score: 55.2480439325792
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A method for approximating continuous functions $\mathbb{Z}_{p}^{n}\rightarrow\mathbb{Z}_{p}$ by a linear superposition of continuous functions $\mathbb{Z}_{p}\rightarrow\mathbb{Z}_{p}$ is presented and a polynomial regression model is constructed that allows approximating such functions with any degree of accuracy. A physical interpretation of such a model is given and possible methods for its training are discussed. The proposed model can be considered as a simple alternative to possible $p$-adic models based on neural network architecture.
Related papers
- Learning sum of diverse features: computational hardness and efficient gradient-based training for ridge combinations [40.77319247558742]
We study the computational complexity of learning a target function $f_*:mathbbRdtomathbbR$ with additive structure.
We prove that a large subset of $f_*$ can be efficiently learned by gradient training of a two-layer neural network.
arXiv Detail & Related papers (2024-06-17T17:59:17Z) - Deep neural networks with ReLU, leaky ReLU, and softplus activation
provably overcome the curse of dimensionality for Kolmogorov partial
differential equations with Lipschitz nonlinearities in the $L^p$-sense [3.3123773366516645]
We show that deep neural networks (DNNs) have the expressive power to approximate PDE solutions without the curse of dimensionality (COD)
It is the key contribution of this work to generalize this result by establishing this statement in the $Lp$-sense with $pin(0,infty)$.
arXiv Detail & Related papers (2023-09-24T18:58:18Z) - Neural Implicit Manifold Learning for Topology-Aware Density Estimation [15.878635603835063]
Current generative models learn $mathcalM$ by mapping an $m$-dimensional latent variable through a neural network.
We show that our model can learn manifold-supported distributions with complex topologies more accurately than pushforward models.
arXiv Detail & Related papers (2022-06-22T18:00:00Z) - Diffusion models as plug-and-play priors [98.16404662526101]
We consider the problem of inferring high-dimensional data $mathbfx$ in a model that consists of a prior $p(mathbfx)$ and an auxiliary constraint $c(mathbfx,mathbfy)$.
The structure of diffusion models allows us to perform approximate inference by iterating differentiation through the fixed denoising network enriched with different amounts of noise.
arXiv Detail & Related papers (2022-06-17T21:11:36Z) - Bagged Polynomial Regression and Neural Networks [0.0]
Series and dataset regression are able to approximate the same function classes as neural networks.
textitbagged regression (BPR) is an attractive alternative to neural networks.
BPR performs as well as neural networks in crop classification using satellite data.
arXiv Detail & Related papers (2022-05-17T19:55:56Z) - Neural Implicit Surface Evolution [0.8505099974703285]
This work investigates the use of smooth neural networks for modeling dynamic variations of implicit surfaces under the level set equation (LSE)
It extends the representation of implicit surfaces to the space-time $mathbbR3times mathbbR$, which opens up mechanisms for continuous transformations.
arXiv Detail & Related papers (2022-01-24T12:31:24Z) - Bilinear Classes: A Structural Framework for Provable Generalization in
RL [119.42509700822484]
Bilinear Classes is a new structural framework which permits generalization in reinforcement learning.
The framework incorporates nearly all existing models in which a sample complexity is achievable.
Our main result provides an RL algorithm which has sample complexity for Bilinear Classes.
arXiv Detail & Related papers (2021-03-19T16:34:20Z) - Multiscale regression on unknown manifolds [13.752772802705978]
We construct low-dimensional coordinates on $mathcalM$ at multiple scales and perform multiscale regression by local fitting.
We analyze the generalization error of our method by proving finite sample bounds in high probability on rich classes of priors.
Our algorithm has quasilinear complexity in the sample size, with constants linear in $D$ and exponential in $d$.
arXiv Detail & Related papers (2021-01-13T15:14:31Z) - Learning to extrapolate using continued fractions: Predicting the
critical temperature of superconductor materials [5.905364646955811]
In the field of Artificial Intelligence (AI) and Machine Learning (ML), the approximation of unknown target functions $y=f(mathbfx)$ is a common objective.
We refer to $S$ as the training set and aim to identify a low-complexity mathematical model that can effectively approximate this target function for new instances $mathbfx$.
arXiv Detail & Related papers (2020-11-27T04:57:40Z) - On Function Approximation in Reinforcement Learning: Optimism in the
Face of Large State Spaces [208.67848059021915]
We study the exploration-exploitation tradeoff at the core of reinforcement learning.
In particular, we prove that the complexity of the function class $mathcalF$ characterizes the complexity of the function.
Our regret bounds are independent of the number of episodes.
arXiv Detail & Related papers (2020-11-09T18:32:22Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z) - Complexity of Finding Stationary Points of Nonsmooth Nonconvex Functions [84.49087114959872]
We provide the first non-asymptotic analysis for finding stationary points of nonsmooth, nonsmooth functions.
In particular, we study Hadamard semi-differentiable functions, perhaps the largest class of nonsmooth functions.
arXiv Detail & Related papers (2020-02-10T23:23:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.