Optimisation of Spectral Wavelets for Persistence-based Graph
Classification
- URL: http://arxiv.org/abs/2101.05201v2
- Date: Mon, 1 Mar 2021 16:43:12 GMT
- Title: Optimisation of Spectral Wavelets for Persistence-based Graph
Classification
- Authors: Ka Man Yim, Jacob Leygonie
- Abstract summary: We propose a framework that optimises the choice of wavelet for a dataset of graphs.
Our framework encodes geometric properties of graphs in their associated persistence diagrams.
We apply our framework to graph classification problems and obtain performances competitive with other persistence-based architectures.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A graph's spectral wavelet signature determines a filtration, and
consequently an associated set of extended persistence diagrams. We propose a
framework that optimises the choice of wavelet for a dataset of graphs, such
that their associated persistence diagrams capture features of the graphs that
are best suited to a given data science problem. Since the spectral wavelet
signature of a graph is derived from its Laplacian, our framework encodes
geometric properties of graphs in their associated persistence diagrams and can
be applied to graphs without a priori node attributes. We apply our framework
to graph classification problems and obtain performances competitive with other
persistence-based architectures. To provide the underlying theoretical
foundations, we extend the differentiability result for ordinary persistent
homology to extended persistent homology.
Related papers
- Graph Classification Gaussian Processes via Spectral Features [7.474662887810221]
Graph classification aims to categorise graphs based on their structure and node attributes.
In this work, we propose to tackle this task using tools from graph signal processing by deriving spectral features.
We show that even such a simple approach, having no learned parameters, can yield competitive performance compared to strong neural network and graph kernel baselines.
arXiv Detail & Related papers (2023-06-06T15:31:05Z) - Spectral Augmentations for Graph Contrastive Learning [50.149996923976836]
Contrastive learning has emerged as a premier method for learning representations with or without supervision.
Recent studies have shown its utility in graph representation learning for pre-training.
We propose a set of well-motivated graph transformation operations to provide a bank of candidates when constructing augmentations for a graph contrastive objective.
arXiv Detail & Related papers (2023-02-06T16:26:29Z) - A Multi-scale Graph Signature for Persistence Diagrams based on Return
Probabilities of Random Walks [1.745838188269503]
We explore the use of a family of multi-scale graph signatures to enhance the robustness of topological features.
We propose a deep learning architecture to handle this set input.
Experiments on benchmark graph classification datasets demonstrate that our proposed architecture outperforms other persistent homology-based methods.
arXiv Detail & Related papers (2022-09-28T17:30:27Z) - Demystifying Graph Convolution with a Simple Concatenation [6.542119695695405]
We quantify the information overlap between graph topology, node features, and labels.
We show that graph concatenation is a simple but more flexible alternative to graph convolution.
arXiv Detail & Related papers (2022-07-18T16:39:33Z) - Spectral Graph Convolutional Networks With Lifting-based Adaptive Graph
Wavelets [81.63035727821145]
Spectral graph convolutional networks (SGCNs) have been attracting increasing attention in graph representation learning.
We propose a novel class of spectral graph convolutional networks that implement graph convolutions with adaptive graph wavelets.
arXiv Detail & Related papers (2021-08-03T17:57:53Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
We propose a robust framework for adversarial graph embedding, named AGE.
AGE generates the fake neighbor nodes as the enhanced negative samples from the implicit distribution.
Based on this framework, we propose three models to handle three types of graph data.
arXiv Detail & Related papers (2021-05-22T07:05:48Z) - Accurate Learning of Graph Representations with Graph Multiset Pooling [45.72542969364438]
We propose a Graph Multiset Transformer (GMT) that captures the interaction between nodes according to their structural dependencies.
Our experimental results show that GMT significantly outperforms state-of-the-art graph pooling methods on graph classification benchmarks.
arXiv Detail & Related papers (2021-02-23T07:45:58Z) - GraphOpt: Learning Optimization Models of Graph Formation [72.75384705298303]
We propose an end-to-end framework that learns an implicit model of graph structure formation and discovers an underlying optimization mechanism.
The learned objective can serve as an explanation for the observed graph properties, thereby lending itself to transfer across different graphs within a domain.
GraphOpt poses link formation in graphs as a sequential decision-making process and solves it using maximum entropy inverse reinforcement learning algorithm.
arXiv Detail & Related papers (2020-07-07T16:51:39Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
We propose a novel graph pooling strategy that leverages node proximity to improve the hierarchical representation learning of graph data with their multi-hop topology.
Results show that the proposed graph pooling strategy is able to achieve state-of-the-art performance on a collection of public graph classification benchmark datasets.
arXiv Detail & Related papers (2020-06-19T13:09:44Z) - Graphon Pooling in Graph Neural Networks [169.09536309161314]
Graph neural networks (GNNs) have been used effectively in different applications involving the processing of signals on irregular structures modeled by graphs.
We propose a new strategy for pooling and sampling on GNNs using graphons which preserves the spectral properties of the graph.
arXiv Detail & Related papers (2020-03-03T21:04:20Z) - Homology-Preserving Multi-Scale Graph Skeletonization Using Mapper on
Graphs [5.86893539706548]
We propose to apply the mapper construction -- a popular tool in topological data analysis -- to graph visualization.
We develop a variation of the mapper construction targeting weighted, undirected graphs, called mog, which generates homology-preserving skeletons of graphs.
We provide a software tool that enables interactive explorations of such skeletons and demonstrate the effectiveness of our method for synthetic and real-world data.
arXiv Detail & Related papers (2018-04-03T19:18:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.