Graph Classification Gaussian Processes via Spectral Features
- URL: http://arxiv.org/abs/2306.03770v1
- Date: Tue, 6 Jun 2023 15:31:05 GMT
- Title: Graph Classification Gaussian Processes via Spectral Features
- Authors: Felix L. Opolka, Yin-Cong Zhi, Pietro Li\`o, Xiaowen Dong
- Abstract summary: Graph classification aims to categorise graphs based on their structure and node attributes.
In this work, we propose to tackle this task using tools from graph signal processing by deriving spectral features.
We show that even such a simple approach, having no learned parameters, can yield competitive performance compared to strong neural network and graph kernel baselines.
- Score: 7.474662887810221
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph classification aims to categorise graphs based on their structure and
node attributes. In this work, we propose to tackle this task using tools from
graph signal processing by deriving spectral features, which we then use to
design two variants of Gaussian process models for graph classification. The
first variant uses spectral features based on the distribution of energy of a
node feature signal over the spectrum of the graph. We show that even such a
simple approach, having no learned parameters, can yield competitive
performance compared to strong neural network and graph kernel baselines. A
second, more sophisticated variant is designed to capture multi-scale and
localised patterns in the graph by learning spectral graph wavelet filters,
obtaining improved performance on synthetic and real-world data sets. Finally,
we show that both models produce well calibrated uncertainty estimates,
enabling reliable decision making based on the model predictions.
Related papers
- GSpect: Spectral Filtering for Cross-Scale Graph Classification [9.800723513820046]
We propose GSpect, an advanced spectral graph filtering model for cross-scale graph classification tasks.
On open data sets, GSpect improves the performance of classification accuracy by 1.62% on average, and for a maximum of 3.33% on PROTEINS.
GSpect fills the gap in cross-scale graph classification studies and has potential to provide assistance in application research like diagnosis of brain disease.
arXiv Detail & Related papers (2024-08-31T03:26:32Z) - Spectral Augmentations for Graph Contrastive Learning [50.149996923976836]
Contrastive learning has emerged as a premier method for learning representations with or without supervision.
Recent studies have shown its utility in graph representation learning for pre-training.
We propose a set of well-motivated graph transformation operations to provide a bank of candidates when constructing augmentations for a graph contrastive objective.
arXiv Detail & Related papers (2023-02-06T16:26:29Z) - GrannGAN: Graph annotation generative adversarial networks [72.66289932625742]
We consider the problem of modelling high-dimensional distributions and generating new examples of data with complex relational feature structure coherent with a graph skeleton.
The model we propose tackles the problem of generating the data features constrained by the specific graph structure of each data point by splitting the task into two phases.
In the first it models the distribution of features associated with the nodes of the given graph, in the second it complements the edge features conditionally on the node features.
arXiv Detail & Related papers (2022-12-01T11:49:07Z) - A Spectral Analysis of Graph Neural Networks on Dense and Sparse Graphs [13.954735096637298]
We analyze how sparsity affects the graph spectra, and thus the performance of graph neural networks (GNNs) in node classification on dense and sparse graphs.
We show that GNNs can outperform spectral methods on sparse graphs, and illustrate these results with numerical examples on both synthetic and real graphs.
arXiv Detail & Related papers (2022-11-06T22:38:13Z) - Adaptive Gaussian Processes on Graphs via Spectral Graph Wavelets [3.2498534294827044]
We propose a process model using spectral graph wavelets, which can aggregate information at different scales.
We achieve scalability to larger graphs by using a spectrum-adaptive approximation of the filter function, which is designed to yield a low approximation error in dense areas of the graph spectrum.
arXiv Detail & Related papers (2021-10-25T09:25:04Z) - Pointspectrum: Equivariance Meets Laplacian Filtering for Graph
Representation Learning [3.7875603451557063]
Graph Representation Learning (GRL) has become essential for modern graph data mining and learning tasks.
While Graph Neural Networks (GNNs) have been used in state-of-the-art GRL architectures, they have been shown to suffer from over smoothing.
We propose PointSpectrum, a spectral method that incorporates a set equivariant network to account for a graph's structure.
arXiv Detail & Related papers (2021-09-06T10:59:11Z) - Spectral-Spatial Global Graph Reasoning for Hyperspectral Image
Classification [50.899576891296235]
Convolutional neural networks have been widely applied to hyperspectral image classification.
Recent methods attempt to address this issue by performing graph convolutions on spatial topologies.
arXiv Detail & Related papers (2021-06-26T06:24:51Z) - Line Graph Neural Networks for Link Prediction [71.00689542259052]
We consider the graph link prediction task, which is a classic graph analytical problem with many real-world applications.
In this formalism, a link prediction problem is converted to a graph classification task.
We propose to seek a radically different and novel path by making use of the line graphs in graph theory.
In particular, each node in a line graph corresponds to a unique edge in the original graph. Therefore, link prediction problems in the original graph can be equivalently solved as a node classification problem in its corresponding line graph, instead of a graph classification task.
arXiv Detail & Related papers (2020-10-20T05:54:31Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
We propose a novel graph pooling strategy that leverages node proximity to improve the hierarchical representation learning of graph data with their multi-hop topology.
Results show that the proposed graph pooling strategy is able to achieve state-of-the-art performance on a collection of public graph classification benchmark datasets.
arXiv Detail & Related papers (2020-06-19T13:09:44Z) - Gaussian Processes on Graphs via Spectral Kernel Learning [9.260186030255081]
We propose a graph spectrum-based Gaussian process for prediction of signals defined on nodes of the graph.
We demonstrate the interpretability of the model in synthetic experiments from which we show the various ground truth spectral filters can be accurately recovered.
arXiv Detail & Related papers (2020-06-12T17:51:22Z) - Graphon Pooling in Graph Neural Networks [169.09536309161314]
Graph neural networks (GNNs) have been used effectively in different applications involving the processing of signals on irregular structures modeled by graphs.
We propose a new strategy for pooling and sampling on GNNs using graphons which preserves the spectral properties of the graph.
arXiv Detail & Related papers (2020-03-03T21:04:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.