UCNN: A Convolutional Strategy on Unstructured Mesh
- URL: http://arxiv.org/abs/2101.05207v1
- Date: Tue, 12 Jan 2021 10:48:25 GMT
- Title: UCNN: A Convolutional Strategy on Unstructured Mesh
- Authors: Mengfei Xu, Shufang Song, Xuxiang Sun, Weiwei Zhang
- Abstract summary: In machine learning for fluid mechanics, fully-connected neural network (FNN) only uses the local features for modelling.
The unstructured convolutional neural network (UCNN) is proposed, which aggregates and effectively exploits the features of neighbour nodes through the weight function.
The results indicate that UCNN is more accurate in modelling process.
- Score: 1.871055320062469
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In machine learning for fluid mechanics, fully-connected neural network (FNN)
only uses the local features for modelling, while the convolutional neural
network (CNN) cannot be applied to data on structured/unstructured mesh. In
order to overcome the limitations of FNN and CNN, the unstructured
convolutional neural network (UCNN) is proposed, which aggregates and
effectively exploits the features of neighbour nodes through the weight
function. Adjoint vector modelling is taken as the task to study the
performance of UCNN. The mapping function from flow-field features to adjoint
vector is constructed through efficient parallel implementation on GPU. The
modelling capability of UCNN is compared with that of FNN on validation set and
in aerodynamic shape optimization at test case. The influence of mesh changing
on the modelling capability of UCNN is further studied. The results indicate
that UCNN is more accurate in modelling process.
Related papers
- Scalable Mechanistic Neural Networks [52.28945097811129]
We propose an enhanced neural network framework designed for scientific machine learning applications involving long temporal sequences.
By reformulating the original Mechanistic Neural Network (MNN) we reduce the computational time and space complexities from cubic and quadratic with respect to the sequence length, respectively, to linear.
Extensive experiments demonstrate that S-MNN matches the original MNN in precision while substantially reducing computational resources.
arXiv Detail & Related papers (2024-10-08T14:27:28Z) - Use of Parallel Explanatory Models to Enhance Transparency of Neural Network Configurations for Cell Degradation Detection [18.214293024118145]
We build a parallel model to illuminate and understand the internal operation of neural networks.
We show how each layer of the RNN transforms the input distributions to increase detection accuracy.
At the same time we also discover a side effect acting to limit the improvement in accuracy.
arXiv Detail & Related papers (2024-04-17T12:22:54Z) - Optimising Event-Driven Spiking Neural Network with Regularisation and
Cutoff [33.91830001268308]
Spiking neural network (SNN) offers promising improvements in computational efficiency.
Current SNN training methodologies predominantly employ a fixed timestep approach.
We propose to consider cutoff in SNN, which can terminate SNN anytime during the inference to achieve efficient inference.
arXiv Detail & Related papers (2023-01-23T16:14:09Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
Spiking Neural Network (SNN) is a promising energy-efficient AI model when implemented on neuromorphic hardware.
It is a challenge to efficiently train SNNs due to their non-differentiability.
We propose the Differentiation on Spike Representation (DSR) method, which could achieve high performance.
arXiv Detail & Related papers (2022-05-01T12:44:49Z) - Topology-aware Convolutional Neural Network for Efficient Skeleton-based
Action Recognition [15.93566875893684]
We propose a pure CNN architecture named Topology-aware CNN (Ta-CNN) in this paper.
We develop a novel cross-channel feature augmentation module, which is a combo of map-attend-group-map operations.
In particular, we develop a novel cross-channel feature augmentation module, which is a combo of map-attend-group-map operations.
arXiv Detail & Related papers (2021-12-08T09:02:50Z) - Strengthening the Training of Convolutional Neural Networks By Using
Walsh Matrix [0.0]
We have modified the training and structure of DNN to increase the classification performance.
A minimum distance network (MDN) following the last layer of the convolutional neural network (CNN) is used as the classifier.
In different areas, it has been observed that a higher classification performance was obtained by using the DivFE with less number of nodes.
arXiv Detail & Related papers (2021-03-31T18:06:11Z) - Spatio-Temporal Neural Network for Fitting and Forecasting COVID-19 [1.1129587851149594]
We established a Spatio-Temporal Neural Network, namely STNN, to forecast the spread of the coronavirus COVID-19 outbreak worldwide in 2020.
Two improved STNN architectures, namely the STNN with Augmented Spatial States (STNN-A) and the STNN with Input Gate (STNN-I), are proposed.
Numerical simulations demonstrate that STNN models outperform many others by providing more accurate fitting and prediction, and by handling both spatial and temporal data.
arXiv Detail & Related papers (2021-03-22T13:59:14Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
Graph Neural Networks (GNNs) have risen to prominence in learning representations for graph structured data.
In this work, we establish mathematically that the aggregation processes in a group of representative GNN models can be regarded as solving a graph denoising problem.
We instantiate a novel GNN model, ADA-UGNN, derived from UGNN, to handle graphs with adaptive smoothness across nodes.
arXiv Detail & Related papers (2020-10-05T04:57:18Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
This paper proposes a new mean-field framework for over- parameterized deep neural networks (DNNs)
In this framework, a DNN is represented by probability measures and functions over its features in the continuous limit.
We illustrate the framework via the standard DNN and the Residual Network (Res-Net) architectures.
arXiv Detail & Related papers (2020-07-03T01:37:16Z) - Binarized Graph Neural Network [65.20589262811677]
We develop a binarized graph neural network to learn the binary representations of the nodes with binary network parameters.
Our proposed method can be seamlessly integrated into the existing GNN-based embedding approaches.
Experiments indicate that the proposed binarized graph neural network, namely BGN, is orders of magnitude more efficient in terms of both time and space.
arXiv Detail & Related papers (2020-04-19T09:43:14Z) - Approximation and Non-parametric Estimation of ResNet-type Convolutional
Neural Networks [52.972605601174955]
We show a ResNet-type CNN can attain the minimax optimal error rates in important function classes.
We derive approximation and estimation error rates of the aformentioned type of CNNs for the Barron and H"older classes.
arXiv Detail & Related papers (2019-03-24T19:42:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.