Strengthening the Training of Convolutional Neural Networks By Using
Walsh Matrix
- URL: http://arxiv.org/abs/2104.00035v1
- Date: Wed, 31 Mar 2021 18:06:11 GMT
- Title: Strengthening the Training of Convolutional Neural Networks By Using
Walsh Matrix
- Authors: Tamer \"Olmez and Z\"umray Dokur
- Abstract summary: We have modified the training and structure of DNN to increase the classification performance.
A minimum distance network (MDN) following the last layer of the convolutional neural network (CNN) is used as the classifier.
In different areas, it has been observed that a higher classification performance was obtained by using the DivFE with less number of nodes.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: DNN structures are continuously developing and achieving high performances in
classification problems. Also, it is observed that success rates obtained with
DNNs are higher than those obtained with traditional neural networks. In
addition, one of the advantages of DNNs is that there is no need to spend an
extra effort to determine the features; the CNN automatically extracts the
features from the dataset during the training. Besides their benefits, the DNNs
have the following three major drawbacks among the others: (i) Researchers have
struggled with over-fitting and under-fitting issues in the training of DNNs,
(ii) determination of even a coarse structure for the DNN may take days, and
(iii) most of the time, the proposed network structure is too large to be too
bulky to be used in real time applications. We have modified the training and
structure of DNN to increase the classification performance, to decrease the
number of nodes in the structure, and to be used with less number of hyper
parameters. A minimum distance network (MDN) following the last layer of the
convolutional neural network (CNN) is used as the classifier instead of a fully
connected neural network (FCNN). In order to strengthen the training of the
CNN, we suggest employing Walsh function. We tested the performances of the
proposed DNN (named as DivFE) on the classification of ECG, EEG, heart sound,
detection pneumonia in X-ray chest images, detection of BGA solder defects, and
patterns of benchmark datasets (MNIST, IRIS, CIFAR10 and CIFAR20). In different
areas, it has been observed that a higher classification performance was
obtained by using the DivFE with less number of nodes.
Related papers
- NAS-BNN: Neural Architecture Search for Binary Neural Networks [55.058512316210056]
We propose a novel neural architecture search scheme for binary neural networks, named NAS-BNN.
Our discovered binary model family outperforms previous BNNs for a wide range of operations (OPs) from 20M to 200M.
In addition, we validate the transferability of these searched BNNs on the object detection task, and our binary detectors with the searched BNNs achieve a novel state-of-the-art result, e.g., 31.6% mAP with 370M OPs, on MS dataset.
arXiv Detail & Related papers (2024-08-28T02:17:58Z) - Unveiling the Power of Sparse Neural Networks for Feature Selection [60.50319755984697]
Sparse Neural Networks (SNNs) have emerged as powerful tools for efficient feature selection.
We show that SNNs trained with dynamic sparse training (DST) algorithms can achieve, on average, more than $50%$ memory and $55%$ FLOPs reduction.
Our findings show that feature selection with SNNs trained with DST algorithms can achieve, on average, more than $50%$ memory and $55%$ FLOPs reduction.
arXiv Detail & Related papers (2024-08-08T16:48:33Z) - BKDSNN: Enhancing the Performance of Learning-based Spiking Neural Networks Training with Blurred Knowledge Distillation [20.34272550256856]
Spiking neural networks (SNNs) mimic biological neural system to convey information via discrete spikes.
Our work achieves state-of-the-art performance for training SNNs on both static and neuromorphic datasets.
arXiv Detail & Related papers (2024-07-12T08:17:24Z) - High-performance deep spiking neural networks with 0.3 spikes per neuron [9.01407445068455]
It is hard to train biologically-inspired spiking neural networks (SNNs) than artificial neural networks (ANNs)
We show that training deep SNN models achieves the exact same performance as that of ANNs.
Our SNN accomplishes high-performance classification with less than 0.3 spikes per neuron, lending itself for an energy-efficient implementation.
arXiv Detail & Related papers (2023-06-14T21:01:35Z) - Examining the Robustness of Spiking Neural Networks on Non-ideal
Memristive Crossbars [4.184276171116354]
Spiking Neural Networks (SNNs) have emerged as the low-power alternative to Artificial Neural Networks (ANNs)
We study the effect of crossbar non-idealities and intrinsicity on the performance of SNNs.
arXiv Detail & Related papers (2022-06-20T07:07:41Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
Spiking Neural Network (SNN) is a promising energy-efficient AI model when implemented on neuromorphic hardware.
It is a challenge to efficiently train SNNs due to their non-differentiability.
We propose the Differentiation on Spike Representation (DSR) method, which could achieve high performance.
arXiv Detail & Related papers (2022-05-01T12:44:49Z) - Sub-bit Neural Networks: Learning to Compress and Accelerate Binary
Neural Networks [72.81092567651395]
Sub-bit Neural Networks (SNNs) are a new type of binary quantization design tailored to compress and accelerate BNNs.
SNNs are trained with a kernel-aware optimization framework, which exploits binary quantization in the fine-grained convolutional kernel space.
Experiments on visual recognition benchmarks and the hardware deployment on FPGA validate the great potentials of SNNs.
arXiv Detail & Related papers (2021-10-18T11:30:29Z) - Topological Measurement of Deep Neural Networks Using Persistent
Homology [0.7919213739992464]
The inner representation of deep neural networks (DNNs) is indecipherable.
Persistent homology (PH) was employed for investigating the complexities of trained DNNs.
arXiv Detail & Related papers (2021-06-06T03:06:15Z) - Pruning of Deep Spiking Neural Networks through Gradient Rewiring [41.64961999525415]
Spiking Neural Networks (SNNs) have been attached great importance due to their biological plausibility and high energy-efficiency on neuromorphic chips.
Most existing methods directly apply pruning approaches in artificial neural networks (ANNs) to SNNs, which ignore the difference between ANNs and SNNs.
We propose gradient rewiring (Grad R), a joint learning algorithm of connectivity and weight for SNNs, that enables us to seamlessly optimize network structure without retrain.
arXiv Detail & Related papers (2021-05-11T10:05:53Z) - Deep Time Delay Neural Network for Speech Enhancement with Full Data
Learning [60.20150317299749]
This paper proposes a deep time delay neural network (TDNN) for speech enhancement with full data learning.
To make full use of the training data, we propose a full data learning method for speech enhancement.
arXiv Detail & Related papers (2020-11-11T06:32:37Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.