Non-intrusive surrogate modeling for parametrized time-dependent PDEs
using convolutional autoencoders
- URL: http://arxiv.org/abs/2101.05555v1
- Date: Thu, 14 Jan 2021 11:34:58 GMT
- Title: Non-intrusive surrogate modeling for parametrized time-dependent PDEs
using convolutional autoencoders
- Authors: Stefanos Nikolopoulos, Ioannis Kalogeris, Vissarion Papadopoulos
- Abstract summary: We present a non-intrusive surrogate modeling scheme based on machine learning for predictive modeling of complex, systems by parametrized timedependent PDEs.
We use a convolutional autoencoder in conjunction with a feed forward neural network to establish a low-cost and accurate mapping from problem's parametric space to its solution space.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work presents a non-intrusive surrogate modeling scheme based on machine
learning technology for predictive modeling of complex systems, described by
parametrized time-dependent PDEs. For these problems, typical finite element
approaches involve the spatiotemporal discretization of the PDE and the
solution of the corresponding linear system of equations at each time step.
Instead, the proposed method utilizes a convolutional autoencoder in
conjunction with a feed forward neural network to establish a low-cost and
accurate mapping from the problem's parametric space to its solution space. For
this purpose, time history response data are collected by solving the
high-fidelity model via FEM for a reduced set of parameter values. Then, by
applying the convolutional autoencoder to this data set, a low-dimensional
representation of the high-dimensional solution matrices is provided by the
encoder, while the reconstruction map is obtained by the decoder. Using the
latent representation given by the encoder, a feed-forward neural network is
efficiently trained to map points from the problem's parametric space to the
compressed version of the respective solution matrices. This way, the encoded
response of the system at new parameter values is given by the neural network,
while the entire response is delivered by the decoder. This approach
effectively bypasses the need to serially formulate and solve the system's
governing equations at each time increment, thus resulting in a significant
cost reduction and rendering the method ideal for problems requiring repeated
model evaluations or 'real-time' computations. The elaborated methodology is
demonstrated on the stochastic analysis of time-dependent PDEs solved with the
Monte Carlo method, however, it can be straightforwardly applied to other
similar-type problems, such as sensitivity analysis, design optimization, etc.
Related papers
- On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
Diffusion-based generative models use differential equations to establish a smooth connection between a complex data distribution and a tractable prior distribution.
In this paper, we identify several intriguing trajectory properties in the ODE-based sampling process of diffusion models.
arXiv Detail & Related papers (2024-05-18T15:59:41Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
We propose a novel methodology for addressing the hyperspectral image deconvolution problem.
A new optimization problem is formulated, leveraging a learnable regularizer in the form of a neural network.
The derived iterative solver is then expressed as a fixed-point calculation problem within the Deep Equilibrium framework.
arXiv Detail & Related papers (2023-06-10T08:25:16Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
We develop an ODE based IVP solver which prevents the network from getting ill-conditioned and runs in time linear in the number of parameters.
We show that current methods based on this approach suffer from two key issues.
First, following the ODE produces an uncontrolled growth in the conditioning of the problem, ultimately leading to unacceptably large numerical errors.
arXiv Detail & Related papers (2023-04-28T17:28:18Z) - Reduced order modeling of parametrized systems through autoencoders and
SINDy approach: continuation of periodic solutions [0.0]
This work presents a data-driven, non-intrusive framework which combines ROM construction with reduced dynamics identification.
The proposed approach leverages autoencoder neural networks with parametric sparse identification of nonlinear dynamics (SINDy) to construct a low-dimensional dynamical model.
These aim at tracking the evolution of periodic steady-state responses as functions of system parameters, avoiding the computation of the transient phase, and allowing to detect instabilities and bifurcations.
arXiv Detail & Related papers (2022-11-13T01:57:18Z) - AI-enhanced iterative solvers for accelerating the solution of large
scale parametrized linear systems of equations [0.0]
This paper exploits up-to-date ML tools and delivers customized iterative solvers of linear equation systems.
The results indicate its superiority over conventional iterative solution schemes.
arXiv Detail & Related papers (2022-07-06T09:47:14Z) - Neural Implicit Flow: a mesh-agnostic dimensionality reduction paradigm
of spatio-temporal data [4.996878640124385]
We propose a general framework called Neural Implicit Flow (NIF) that enables a mesh-agnostic, low-rank representation of large-scale, parametric, spatialtemporal data.
NIF consists of two modified multilayer perceptrons (i) ShapeNet, which isolates and represents the spatial complexity (i) ShapeNet, which accounts for any other input measurements, including parametric dependencies, time, and sensor measurements.
We demonstrate the utility of NIF for parametric surrogate modeling, enabling the interpretable representation and compression of complex spatial-temporal dynamics, efficient many-spatial-temporal generalization, and improved performance for sparse
arXiv Detail & Related papers (2022-04-07T05:02:58Z) - PI-VAE: Physics-Informed Variational Auto-Encoder for stochastic
differential equations [2.741266294612776]
We propose a new class of physics-informed neural networks, called physics-informed Variational Autoencoder (PI-VAE)
PI-VAE consists of a variational autoencoder (VAE), which generates samples of system variables and parameters.
The satisfactory accuracy and efficiency of the proposed method are numerically demonstrated in comparison with physics-informed generative adversarial network (PI-WGAN)
arXiv Detail & Related papers (2022-03-21T21:51:19Z) - Message Passing Neural PDE Solvers [60.77761603258397]
We build a neural message passing solver, replacing allally designed components in the graph with backprop-optimized neural function approximators.
We show that neural message passing solvers representationally contain some classical methods, such as finite differences, finite volumes, and WENO schemes.
We validate our method on various fluid-like flow problems, demonstrating fast, stable, and accurate performance across different domain topologies, equation parameters, discretizations, etc., in 1D and 2D.
arXiv Detail & Related papers (2022-02-07T17:47:46Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - Surrogate Models for Optimization of Dynamical Systems [0.0]
This paper provides a smart data driven mechanism to construct low dimensional surrogate models.
These surrogate models reduce the computational time for solution of the complex optimization problems.
arXiv Detail & Related papers (2021-01-22T14:09:30Z) - Identification of Probability weighted ARX models with arbitrary domains [75.91002178647165]
PieceWise Affine models guarantees universal approximation, local linearity and equivalence to other classes of hybrid system.
In this work, we focus on the identification of PieceWise Auto Regressive with eXogenous input models with arbitrary regions (NPWARX)
The architecture is conceived following the Mixture of Expert concept, developed within the machine learning field.
arXiv Detail & Related papers (2020-09-29T12:50:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.