AI-enhanced iterative solvers for accelerating the solution of large
scale parametrized linear systems of equations
- URL: http://arxiv.org/abs/2207.02543v1
- Date: Wed, 6 Jul 2022 09:47:14 GMT
- Title: AI-enhanced iterative solvers for accelerating the solution of large
scale parametrized linear systems of equations
- Authors: Stefanos Nikolopoulos, Ioannis Kalogeris, Vissarion Papadopoulos,
George Stavroulakis
- Abstract summary: This paper exploits up-to-date ML tools and delivers customized iterative solvers of linear equation systems.
The results indicate its superiority over conventional iterative solution schemes.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in the field of machine learning open a new era in high
performance computing. Applications of machine learning algorithms for the
development of accurate and cost-efficient surrogates of complex problems have
already attracted major attention from scientists. Despite their powerful
approximation capabilities, however, surrogates cannot produce the `exact'
solution to the problem. To address this issue, this paper exploits up-to-date
ML tools and delivers customized iterative solvers of linear equation systems,
capable of solving large-scale parametrized problems at any desired level of
accuracy. Specifically, the proposed approach consists of the following two
steps. At first, a reduced set of model evaluations is performed and the
corresponding solutions are used to establish an approximate mapping from the
problem's parametric space to its solution space using deep feedforward neural
networks and convolutional autoencoders. This mapping serves a means to obtain
very accurate initial predictions of the system's response to new query points
at negligible computational cost. Subsequently, an iterative solver inspired by
the Algebraic Multigrid method in combination with Proper Orthogonal
Decomposition, termed POD-2G, is developed that successively refines the
initial predictions towards the exact system solutions. The application of
POD-2G as a standalone solver or as preconditioner in the context of
preconditioned conjugate gradient methods is demonstrated on several numerical
examples of large scale systems, with the results indicating its superiority
over conventional iterative solution schemes.
Related papers
- Self-Supervised Learning of Iterative Solvers for Constrained Optimization [0.0]
We propose a learning-based iterative solver for constrained optimization.
It can obtain very fast and accurate solutions by customizing the solver to a specific parametric optimization problem.
A novel loss function based on the Karush-Kuhn-Tucker conditions of optimality is introduced, enabling fully self-supervised training of both neural networks.
arXiv Detail & Related papers (2024-09-12T14:17:23Z) - Demonstration of Scalability and Accuracy of Variational Quantum Linear Solver for Computational Fluid Dynamics [0.0]
This paper presents an exploration of quantum methodologies aimed at achieving high accuracy in solving such a large system of equations.
We consider the 2D, transient, incompressible, viscous, non-linear coupled Burgers equation as a test problem.
Our findings demonstrate that our quantum methods yield results comparable in accuracy to traditional approaches.
arXiv Detail & Related papers (2024-09-05T04:42:24Z) - Learning Constrained Optimization with Deep Augmented Lagrangian Methods [54.22290715244502]
A machine learning (ML) model is trained to emulate a constrained optimization solver.
This paper proposes an alternative approach, in which the ML model is trained to predict dual solution estimates directly.
It enables an end-to-end training scheme is which the dual objective is as a loss function, and solution estimates toward primal feasibility, emulating a Dual Ascent method.
arXiv Detail & Related papers (2024-03-06T04:43:22Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
We propose a novel methodology for addressing the hyperspectral image deconvolution problem.
A new optimization problem is formulated, leveraging a learnable regularizer in the form of a neural network.
The derived iterative solver is then expressed as a fixed-point calculation problem within the Deep Equilibrium framework.
arXiv Detail & Related papers (2023-06-10T08:25:16Z) - Constrained Optimization via Exact Augmented Lagrangian and Randomized
Iterative Sketching [55.28394191394675]
We develop an adaptive inexact Newton method for equality-constrained nonlinear, nonIBS optimization problems.
We demonstrate the superior performance of our method on benchmark nonlinear problems, constrained logistic regression with data from LVM, and a PDE-constrained problem.
arXiv Detail & Related papers (2023-05-28T06:33:37Z) - An Accelerated Doubly Stochastic Gradient Method with Faster Explicit
Model Identification [97.28167655721766]
We propose a novel doubly accelerated gradient descent (ADSGD) method for sparsity regularized loss minimization problems.
We first prove that ADSGD can achieve a linear convergence rate and lower overall computational complexity.
arXiv Detail & Related papers (2022-08-11T22:27:22Z) - A Deep Gradient Correction Method for Iteratively Solving Linear Systems [5.744903762364991]
We present a novel approach to approximate the solution of large, sparse, symmetric, positive-definite linear systems of equations.
Our algorithm is capable of reducing the linear system residual to a given tolerance in a small number of iterations.
arXiv Detail & Related papers (2022-05-22T06:40:38Z) - Accelerated nonlinear primal-dual hybrid gradient algorithms with
applications to machine learning [0.0]
primal-dual hybrid gradient (PDHG) is a first-order method that splits convex optimization problems with saddle-point structure into smaller subproblems.
PDHG requires stepsize parameters fine-tuned for the problem at hand.
We introduce accelerated nonlinear variants of the PDHG algorithm that can achieve, for a broad class of optimization problems relevant to machine learning.
arXiv Detail & Related papers (2021-09-24T22:37:10Z) - Non-intrusive surrogate modeling for parametrized time-dependent PDEs
using convolutional autoencoders [0.0]
We present a non-intrusive surrogate modeling scheme based on machine learning for predictive modeling of complex, systems by parametrized timedependent PDEs.
We use a convolutional autoencoder in conjunction with a feed forward neural network to establish a low-cost and accurate mapping from problem's parametric space to its solution space.
arXiv Detail & Related papers (2021-01-14T11:34:58Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z) - Iterative Algorithm Induced Deep-Unfolding Neural Networks: Precoding
Design for Multiuser MIMO Systems [59.804810122136345]
We propose a framework for deep-unfolding, where a general form of iterative algorithm induced deep-unfolding neural network (IAIDNN) is developed.
An efficient IAIDNN based on the structure of the classic weighted minimum mean-square error (WMMSE) iterative algorithm is developed.
We show that the proposed IAIDNN efficiently achieves the performance of the iterative WMMSE algorithm with reduced computational complexity.
arXiv Detail & Related papers (2020-06-15T02:57:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.