Direct measurement of density-matrix elements using a phase-shifting
technique Tianfeng
- URL: http://arxiv.org/abs/2101.05556v3
- Date: Tue, 5 Oct 2021 04:08:19 GMT
- Title: Direct measurement of density-matrix elements using a phase-shifting
technique Tianfeng
- Authors: Tianfeng Feng, Changliang Ren, Xiaoqi Zhou
- Abstract summary: A direct measurement protocol allows reconstructing specific elements of the density matrix of a quantum state without using quantum state tomography.
Here, we present a direct measurement scheme based on phase-shifting operations which do not need ancillary pointers.
Our method can be used in quantum information applications where only partial information about the quantum state needs to be extracted.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A direct measurement protocol allows reconstructing specific elements of the
density matrix of a quantum state without using quantum state tomography.
However, the direct measurement protocols to date are primarily based on weak
or strong measurements with an ancillary pointer, which interacts with the
investigated system to extract information about the specified elements. Here,
we present a direct measurement scheme based on phase-shifting operations which
do not need ancillary pointers. In this method, estimates of at most six
expectation values of projective observables suffice to determine any specific
element of an unknown quantum density matrix. A concrete quantum circuit to
implement this direct measurement protocol for multiqubit states is provided,
which is composed of just single-qubit gates and two multiqubit
controlled-phase gates. This scheme is also extended for the direct measurement
of the density matrix of continuous-variable quantum states. Our method can be
used in quantum information applications where only partial information about
the quantum state needs to be extracted, for example, problems such as
entanglement witnessing, fidelity estimation of quantum systems, and quantum
coherence estimation.
Related papers
- Learning to Classify Quantum Phases of Matter with a Few Measurements [41.94295877935867]
We study the identification of quantum phases of matter, at zero temperature, when only part of the phase diagram is known in advance.
We show how to use our previous knowledge to construct an observable capable of classifying the phase even in the unknown region.
An important application of our findings is the classification of the phases of matter obtained in quantum simulators.
arXiv Detail & Related papers (2024-09-08T18:52:34Z) - Classification of joint quantum measurements based on entanglement cost of localization [42.72938925647165]
We propose a systematic classification of joint measurements based on entanglement cost.
We show how to numerically explore higher levels and construct generalizations to higher dimensions and multipartite settings.
arXiv Detail & Related papers (2024-08-01T18:00:01Z) - Universal quantum frequency comb measurements by spectral mode-matching [39.58317527488534]
We present the first general approach to make arbitrary, one-shot measurements of a multimode quantum optical source.
This approach uses spectral mode-matching, which can be understood as interferometry with a memory effect.
arXiv Detail & Related papers (2024-05-28T15:17:21Z) - Effect of the readout efficiency of quantum measurement on the system entanglement [44.99833362998488]
We quantify the entanglement for a particle on a 1d quantum random walk under inefficient monitoring.
We find that the system's maximal mean entanglement at the measurement-induced quantum-to-classical crossover is in different ways by the measurement strength and inefficiency.
arXiv Detail & Related papers (2024-02-29T18:10:05Z) - Mitigating Errors on Superconducting Quantum Processors through Fuzzy
Clustering [38.02852247910155]
A new Quantum Error Mitigation (QEM) technique uses Fuzzy C-Means clustering to specifically identify measurement error patterns.
We report a proof-of-principle validation of the technique on a 2-qubit register, obtained as a subset of a real NISQ 5-qubit superconducting quantum processor.
We demonstrate that the FCM-based QEM technique allows for reasonable improvement of the expectation values of single- and two-qubit gates based quantum circuits.
arXiv Detail & Related papers (2024-02-02T14:02:45Z) - Adaptive measurement strategy for quantum subspace methods [0.0]
We propose an adaptive measurement optimization method that is useful for the quantum subspace methods.
The proposed method first determines the measurement protocol for classically simulatable states, and then adaptively updates the protocol of quantum subspace expansion.
As a numerical demonstration, we have shown for excited-state simulation of molecules that we are able to reduce the number of measurements by an order of magnitude.
arXiv Detail & Related papers (2023-11-14T04:00:59Z) - Direct tomography of quantum states and processes via weak measurements
of Pauli spin operators on an NMR quantum processor [3.818504253546488]
We present an efficient weak measurement-based scheme for direct quantum state tomography (DQST) and direct quantum process tomography (DQPT)
We experimentally implement these weak measurement-based DQST and DQPT protocols and use them to accurately characterize several two-qubit quantum states and single-qubit quantum processes.
arXiv Detail & Related papers (2023-03-13T06:40:19Z) - Directly Characterizing the Coherence of Quantum Detectors by Sequential
Measurement [17.71404984480176]
Many specific properties can be determined by a part of matrix entries of the measurement operators.
We propose a general framework to directly obtain individual matrix entries of the measurement operators.
We experimentally implement this scheme to monitor the coherent evolution of a general quantum measurement.
arXiv Detail & Related papers (2021-11-19T17:09:48Z) - Quantum Fisher information from randomized measurements [0.0]
The quantum Fisher information (QFI) is a fundamental quantity of interest in many areas.
We use measurements of the density matrix to construct lower bounds that converge to the QFI.
We present two examples of applications of the method in quantum systems made of coupled qubits and collective spins.
arXiv Detail & Related papers (2021-05-27T14:16:14Z) - Pure State Tomography with Fourier Transformation [3.469001874498102]
Two adaptive protocols are proposed, with their respective quantum circuits.
Experiments on the IBM 5-qubit quantum computer, as well as numerical investigations, demonstrate the feasibility of the proposed protocols.
arXiv Detail & Related papers (2020-08-20T17:13:09Z) - Programming a quantum computer with quantum instructions [39.994876450026865]
We use a density matrixiation protocol to execute quantum instructions on quantum data.
A fixed sequence of classically-defined gates performs an operation that uniquely depends on an auxiliary quantum instruction state.
The utilization of quantum instructions obviates the need for costly tomographic state reconstruction and recompilation.
arXiv Detail & Related papers (2020-01-23T22:43:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.