Solving an Industrially Relevant Quantum Chemistry Problem on Quantum Hardware
- URL: http://arxiv.org/abs/2408.10801v1
- Date: Tue, 20 Aug 2024 12:50:15 GMT
- Title: Solving an Industrially Relevant Quantum Chemistry Problem on Quantum Hardware
- Authors: Ludwig Nützel, Alexander Gresch, Lukas Hehn, Lucas Marti, Robert Freund, Alex Steiner, Christian D. Marciniak, Timo Eckstein, Nina Stockinger, Stefan Wolf, Thomas Monz, Michael Kühn, Michael J. Hartmann,
- Abstract summary: We calculate the lowest energy eigenvalue of active space Hamiltonians of industrially relevant and strongly correlated metal chelates on trapped ion quantum hardware.
We are able to achieve chemical accuracy by training a variational quantum algorithm on quantum hardware, followed by a classical diagonalization in the subspace of states measured as outputs of the quantum circuit.
- Score: 31.15746974078601
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Quantum chemical calculations are among the most promising applications for quantum computing. Implementations of dedicated quantum algorithms on available quantum hardware were so far, however, mostly limited to comparatively simple systems without strong correlations. As such, they can also be addressed by classically efficient single-reference methods. In this work, we calculate the lowest energy eigenvalue of active space Hamiltonians of industrially relevant and strongly correlated metal chelates on trapped ion quantum hardware, and integrate the results into a typical industrial quantum chemical workflow to arrive at chemically meaningful properties. We are able to achieve chemical accuracy by training a variational quantum algorithm on quantum hardware, followed by a classical diagonalization in the subspace of states measured as outputs of the quantum circuit. This approach is particularly measurement-efficient, requiring 600 single-shot measurements per cost function evaluation on a ten qubit system, and allows for efficient post-processing to handle erroneous runs.
Related papers
- Shortcut to Chemically Accurate Quantum Computing via Density-based Basis-set Correction [0.4909687476363595]
We embed a quantum computing ansatz into density-functional theory via density-based basis-set corrections (DBBSC)
We provide a shortcut towards chemically accurate quantum computations by approaching the complete-basis-set limit.
The resulting approach self-consistently accelerates the basis-set convergence, improving electronic densities, ground-state energies, and first-order properties.
arXiv Detail & Related papers (2024-05-19T14:31:01Z) - Rapidly Achieving Chemical Accuracy with Quantum Computing Enforced Language Model [22.163742052849432]
QiankunNet-VQE is a transformer based language models enforced with quantum computing to learn and generate quantum states.
It has been implemented using up to 12 qubits and attaining an accuracy level competitive with state-of-the-art classical methods.
arXiv Detail & Related papers (2024-05-15T07:50:57Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
We present an approach where the quantum computation is supplemented by a classical result.
Taking advantage of its anticipation also leads to a new type of quantum measurements, which we call anticipative.
In an anticipative quantum measurement the combination of the results from classical and quantum computations happens only in the end.
arXiv Detail & Related papers (2022-09-12T15:47:44Z) - Quantum Computing Quantum Monte Carlo [8.69884453265578]
We propose a hybrid quantum-classical algorithm that integrates quantum computing and quantum Monte Carlo.
Our work paves the way to solving practical problems with intermediatescale and early-fault tolerant quantum computers.
arXiv Detail & Related papers (2022-06-21T14:26:24Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Measurements as a roadblock to near-term practical quantum advantage in
chemistry: resource analysis [0.0]
We estimate the number of qubits and number of measurements required to compute the combustion energies of small organic molecules.
We consider several key modern improvements to VQE, including low-rank factorizations of the Hamiltonian.
arXiv Detail & Related papers (2020-12-07T19:13:16Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z) - Simulating quantum chemistry in the seniority-zero space on qubit-based
quantum computers [0.0]
We combine the so-called seniority-zero, or paired-electron, approximation of computational quantum chemistry with techniques for simulating molecular chemistry on gate-based quantum computers.
We show that using the freed-up quantum resources for increasing the basis set can lead to more accurate results and reductions in the necessary number of quantum computing runs.
arXiv Detail & Related papers (2020-01-31T19:44:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.