論文の概要: FBGEMM: Enabling High-Performance Low-Precision Deep Learning Inference
- arxiv url: http://arxiv.org/abs/2101.05615v1
- Date: Wed, 13 Jan 2021 00:34:04 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-30 07:50:23.370919
- Title: FBGEMM: Enabling High-Performance Low-Precision Deep Learning Inference
- Title(参考訳): FBGEMM:高性能低精度ディープラーニング推論の実現
- Authors: Daya Khudia, Jianyu Huang, Protonu Basu, Summer Deng, Haixin Liu,
Jongsoo Park, Mikhail Smelyanskiy
- Abstract要約: fbgemmは、次世代cpuの高性能量子化推論のための高性能カーネルライブラリである。
fbgemmは、高速なgem実装で共通量子化演算を融合させ、実行時に形状およびサイズ固有のカーネルコード生成によって効率を向上する。
このライブラリはfacebookにデプロイされ、現在のプロダクションベースラインの2倍以上のパフォーマンス向上を実現しています。
- 参考スコア(独自算出の注目度): 1.1292678337479967
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning models typically use single-precision (FP32) floating point
data types for representing activations and weights, but a slew of recent
research work has shown that computations with reduced-precision data types
(FP16, 16-bit integers, 8-bit integers or even 4- or 2-bit integers) are enough
to achieve same accuracy as FP32 and are much more efficient. Therefore, we
designed fbgemm, a high-performance kernel library, from ground up to perform
high-performance quantized inference on current generation CPUs. fbgemm
achieves efficiency by fusing common quantization operations with a
high-performance gemm implementation and by shape- and size-specific kernel
code generation at runtime. The library has been deployed at Facebook, where it
delivers greater than 2x performance gains with respect to our current
production baseline.
- Abstract(参考訳): ディープラーニングモデルでは、活性化と重みを表すために単一精度(FP32)浮動小数点データ型を用いるのが一般的であるが、最近の研究で、縮小精度のデータ型(FP16、16ビット整数、8ビット整数、さらには4ビット整数)による計算はFP32と同じ精度を達成するのに十分であることが示されている。
そこで我々は,次世代cpu上で高性能量子化推論を行うため,高性能カーネルライブラリfbgemmをゼロから設計した。
fbgemmは、高速なgem実装で共通量子化演算を融合させ、実行時に形状およびサイズ固有のカーネルコード生成によって効率を向上する。
このライブラリはfacebookにデプロイされ、現在のプロダクションベースラインの2倍以上のパフォーマンス向上を実現しています。
関連論文リスト
- QUIK: Towards End-to-End 4-Bit Inference on Generative Large Language
Models [57.04178959678024]
重み付けとアクティベーションの両方を4ビットにキャストすることで、大きな生成モデルに対する推論計算の大部分が実行可能であることを示す。
これをQUIKと呼ばれるハイブリッド量子化戦略により実現し、重みとアクティベーションの大部分を4ビットに圧縮する。
我々は、QUIKフォーマットを高効率なレイヤワイドランタイムに適合させるGPUカーネルを提供し、これにより、エンドツーエンドのスループットが3.4倍に向上する。
論文 参考訳(メタデータ) (2023-10-13T17:15:05Z) - INR-Arch: A Dataflow Architecture and Compiler for Arbitrary-Order
Gradient Computations in Implicit Neural Representation Processing [66.00729477511219]
計算グラフとして表される関数を考えると、従来のアーキテクチャはn階勾配を効率的に計算する上で困難に直面している。
InR-Archは,n階勾配の計算グラフをハードウェア最適化データフローアーキテクチャに変換するフレームワークである。
1.8-4.8x と 1.5-3.6x の高速化を CPU と GPU のベースラインと比較した結果を示す。
論文 参考訳(メタデータ) (2023-08-11T04:24:39Z) - SqueezeLLM: Dense-and-Sparse Quantization [80.32162537942138]
LLMにおける生成推論の主なボトルネックは、単一のバッチ推論のための計算ではなく、メモリ帯域幅である。
学習後量子化フレームワークであるSqueezeLLMを導入し、最大3ビットの超低精度でのロスレス圧縮を実現する。
本フレームワークは,2次情報に基づく最適ビット精度割当を探索する感度ベース非一様量子化法と,2次情報に基づくDense-and-Sparse分解法と,2次情報量割当値と感度重み値を効率的にスパース形式で格納するDense-and-Sparse分解法である。
論文 参考訳(メタデータ) (2023-06-13T08:57:54Z) - Standalone 16-bit Training: Missing Study for Hardware-Limited Deep Learning Practitioners [2.075190620803526]
混合精度技術は、モデルトレーニングと推論の間に異なる数値精度を活用し、資源利用を最適化する。
リソースが限られている多くの人にとって、利用可能なオプションは32ビット、16ビット、または2つの組み合わせに限られている。
この研究は重要なギャップを埋め、スタンドアロンの16ビット精度のニューラルネットワークが32ビットと混合精度の精度で一致したことを初めて証明した。
論文 参考訳(メタデータ) (2023-05-18T13:09:45Z) - DeepGEMM: Accelerated Ultra Low-Precision Inference on CPU Architectures
using Lookup Tables [49.965024476651706]
DeepGEMMはSIMDハードウェア上で超高精度畳み込みニューラルネットワークを実行するためのルックアップテーブルベースのアプローチである。
実装は、x86プラットフォーム上で、対応する8ビット整数カーネルを最大1.74倍の性能で上回る。
論文 参考訳(メタデータ) (2023-04-18T15:13:10Z) - 8-bit Optimizers via Block-wise Quantization [57.25800395197516]
ステートフルズは、例えば過去の値の指数的滑らかな和(運動量付きSGD)や2乗和(アダム)など、時間の経過とともに統計を維持している。
この状態は、通常の勾配降下よりも最適化を加速するために使用することができるが、そうでなければモデルパラメータに割り当てられる可能性のあるメモリを使用する。
本稿では,32ビットの勾配状態を用いた場合の性能レベルを維持しながら,8ビット統計を用いた第1次勾配法を開発する。
論文 参考訳(メタデータ) (2021-10-06T15:43:20Z) - I-BERT: Integer-only BERT Quantization [78.43819756382103]
トランスフォーマーモデルのための新しい量子化手法であるI-BERTを提案する。
I-BERTは浮動小数点演算なしでエンドツーエンドの整数のみのBERT推論を実行する。
いずれの場合も,I-BERTは全精度ベースラインと同等(かつ若干高い)精度が得られた。
論文 参考訳(メタデータ) (2021-01-05T02:42:58Z) - Revisiting BFloat16 Training [30.99618783594963]
最先端の汎用的低精度トレーニングアルゴリズムでは、16ビットと32ビットの精度が混在している。
ディープラーニングアクセラレータは、16ビットと32ビットの浮動小数点ユニットの両方をサポートせざるを得ない。
論文 参考訳(メタデータ) (2020-10-13T05:38:07Z) - Quantization of Deep Neural Networks for Accumulator-constrained
Processors [2.8489574654566674]
本稿では,大規模な蓄積レジスタを持たないプラットフォームに対して,ニューラルネットワーク(ANN)量子化手法を提案する。
量子化問題をアキュムレータサイズの関数として定式化し、入力データと重みのビット幅を最大化することでモデルの精度を最大化する。
我々は,CIFAR-10およびILSVRC2012画像分類ベンチマークにおいて,浮動小数点ベースラインの1%以内の分類精度が得られることを示した。
論文 参考訳(メタデータ) (2020-04-24T14:47:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。