Group Testing with a Graph Infection Spread Model
- URL: http://arxiv.org/abs/2101.05792v2
- Date: Tue, 29 Mar 2022 17:41:24 GMT
- Title: Group Testing with a Graph Infection Spread Model
- Authors: Batuhan Arasli and Sennur Ulukus
- Abstract summary: Infection spreads via connections between individuals and this results in a probabilistic cluster formation structure as well as a non-i.i.d. infection status for individuals.
We propose a class of two-step sampled group testing algorithms where we exploit the known probabilistic infection spread model.
Our results imply that, by exploiting information on the connections of individuals, group testing can be used to reduce the number of required tests significantly even when infection rate is high.
- Score: 61.48558770435175
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a novel infection spread model based on a random connection graph
which represents connections between $n$ individuals. Infection spreads via
connections between individuals and this results in a probabilistic cluster
formation structure as well as a non-i.i.d. (correlated) infection status for
individuals. We propose a class of two-step sampled group testing algorithms
where we exploit the known probabilistic infection spread model. We investigate
the metrics associated with two-step sampled group testing algorithms. To
demonstrate our results, for analytically tractable exponentially split cluster
formation trees, we calculate the required number of tests and the expected
number of false classifications in terms of the system parameters, and identify
the trade-off between them. For such exponentially split cluster formation
trees, for zero-error construction, we prove that the required number of tests
is $O(\log_2n)$. Thus, for such cluster formation trees, our algorithm
outperforms any zero-error non-adaptive group test, binary splitting algorithm,
and Hwang's generalized binary splitting algorithm. Our results imply that, by
exploiting probabilistic information on the connections of individuals, group
testing can be used to reduce the number of required tests significantly even
when infection rate is high, contrasting the prevalent belief that group
testing is useful only when infection rate is low.
Related papers
- Collaborative non-parametric two-sample testing [55.98760097296213]
The goal is to identify nodes where the null hypothesis $p_v = q_v$ should be rejected.
We propose the non-parametric collaborative two-sample testing (CTST) framework that efficiently leverages the graph structure.
Our methodology integrates elements from f-divergence estimation, Kernel Methods, and Multitask Learning.
arXiv Detail & Related papers (2024-02-08T14:43:56Z) - Multi-Group Fairness Evaluation via Conditional Value-at-Risk Testing [24.553384023323332]
We propose an approach to test for performance disparities based on Conditional Value-at-Risk.
We show that the sample complexity required for discovering performance violations is reduced exponentially to be at most upper bounded by the square root of the number of groups.
arXiv Detail & Related papers (2023-12-06T19:25:32Z) - Statistical and Computational Phase Transitions in Group Testing [73.55361918807883]
We study the group testing problem where the goal is to identify a set of k infected individuals carrying a rare disease.
We consider two different simple random procedures for assigning individuals tests.
arXiv Detail & Related papers (2022-06-15T16:38:50Z) - Optimal Clustering with Bandit Feedback [57.672609011609886]
This paper considers the problem of online clustering with bandit feedback.
It includes a novel stopping rule for sequential testing that circumvents the need to solve any NP-hard weighted clustering problem as its subroutines.
We show through extensive simulations on synthetic and real-world datasets that BOC's performance matches the lower boundally, and significantly outperforms a non-adaptive baseline algorithm.
arXiv Detail & Related papers (2022-02-09T06:05:05Z) - Group Testing with Non-identical Infection Probabilities [59.96266198512243]
We develop an adaptive group testing algorithm using the set formation method.
We show that our algorithm outperforms the state of the art, and performs close to the entropy lower bound.
arXiv Detail & Related papers (2021-08-27T17:53:25Z) - Deep Learning in current Neuroimaging: a multivariate approach with
power and type I error control but arguable generalization ability [0.158310730488265]
A non-parametric framework is proposed that estimates the statistical significance of classifications using deep learning architectures.
A label permutation test is proposed in both studies using cross-validation (CV) and resubstitution with upper bound correction (RUB) as validation methods.
We found in the permutation test that CV and RUB methods offer a false positive rate close to the significance level and an acceptable statistical power.
arXiv Detail & Related papers (2021-03-30T21:15:39Z) - CRISP: A Probabilistic Model for Individual-Level COVID-19 Infection
Risk Estimation Based on Contact Data [6.0785913977668935]
We present a probabilistic graphical model for COVID-19 infection spread through a population based on the SEIR model.
Our micro-level model keeps track of the infection state for each individual at every point in time, ranging from susceptible, exposed, infectious to recovered.
This is the first model with efficient inference for COVID-19 infection spread based on individual-level contact data.
arXiv Detail & Related papers (2020-06-09T04:25:56Z) - Noisy Adaptive Group Testing using Bayesian Sequential Experimental
Design [63.48989885374238]
When the infection prevalence of a disease is low, Dorfman showed 80 years ago that testing groups of people can prove more efficient than testing people individually.
Our goal in this paper is to propose new group testing algorithms that can operate in a noisy setting.
arXiv Detail & Related papers (2020-04-26T23:41:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.