論文の概要: A Subjective Model of Human Decision Making Based on Quantum Decision
Theory
- arxiv url: http://arxiv.org/abs/2101.05851v1
- Date: Thu, 14 Jan 2021 20:02:51 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-29 03:12:14.770678
- Title: A Subjective Model of Human Decision Making Based on Quantum Decision
Theory
- Title(参考訳): 量子決定理論に基づく人間の意思決定の主観的モデル
- Authors: Chenda Zhang, Hedvig Kjellstr\"om
- Abstract要約: 本稿では,異なるリスク,ゲイン,タイムプレッシャーの下でのバイナリゲーム中の個体の挙動を予測するモデルを提案する。
このモデルは量子決定理論(qdt)に基づいており、意思決定の非合理的かつ主観的側面をモデル化できることが示されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Computer modeling of human decision making is of large importance for, e.g.,
sustainable transport, urban development, and online recommendation systems. In
this paper we present a model for predicting the behavior of an individual
during a binary game under different amounts of risk, gain, and time pressure.
The model is based on Quantum Decision Theory (QDT), which has been shown to
enable modeling of the irrational and subjective aspects of the decision
making, not accounted for by the classical Cumulative Prospect Theory (CPT).
Experiments on two different datasets show that our QDT-based approach
outperforms both a CPT-based approach and data driven approaches such as
feed-forward neural networks and random forests.
- Abstract(参考訳): 人間の意思決定のコンピュータモデリングは、例えば、持続可能な輸送、都市開発、オンラインレコメンデーションシステムにとって非常に重要である。
本稿では,異なるリスク,ゲイン,タイムプレッシャーの下でのバイナリゲーム中の個体の挙動を予測するモデルを提案する。
このモデルは量子決定理論(qdt)に基づいており、古典的な累積予測理論(cpt)では説明されず、意思決定の非合理的かつ主観的な側面をモデル化できることが示されている。
2つの異なるデータセットの実験により、私たちのQDTベースのアプローチは、CPTベースのアプローチとフィードフォワードニューラルネットワークやランダムフォレストのようなデータ駆動アプローチの両方より優れています。
関連論文リスト
- CogDPM: Diffusion Probabilistic Models via Cognitive Predictive Coding [62.075029712357]
本研究は認知拡散確率モデル(CogDPM)を紹介する。
CogDPMは拡散モデルの階層的サンプリング能力に基づく精度推定法と拡散モデル固有の性質から推定される精度重み付きガイダンスを備える。
我々は,Universal Kindomの降水量と表面風速データセットを用いた実世界の予測タスクにCogDPMを適用した。
論文 参考訳(メタデータ) (2024-05-03T15:54:50Z) - Learning epidemic trajectories through Kernel Operator Learning: from modelling to optimal control [0.0]
感染拡大に伴う人口動態を再構築するためのカーネル・オペレーター・ラーニング(KOL)の有効性について検討する。
特にKOL-mとKOL-$partial$という2つの代理モデルを導入する。
提案手法は, 高速かつロバストな予測とシナリオ分析を実現するのにいかに適しているかを示す。
論文 参考訳(メタデータ) (2024-04-17T07:21:17Z) - On Predictive planning and counterfactual learning in active inference [0.20482269513546453]
本稿では,「計画」と「経験から学ぶ」に基づくアクティブ推論における2つの意思決定手法について検討する。
これらの戦略間のデータ-複雑さのトレードオフをナビゲートする混合モデルを導入する。
提案手法を,エージェントの適応性を必要とするグリッドワールドシナリオで評価する。
論文 参考訳(メタデータ) (2024-03-19T04:02:31Z) - Human Trajectory Forecasting with Explainable Behavioral Uncertainty [63.62824628085961]
人間の軌道予測は人間の行動を理解し予測し、社会ロボットから自動運転車への応用を可能にする。
モデルフリー手法は予測精度が優れているが説明可能性に欠ける一方、モデルベース手法は説明可能性を提供するが、よく予測できない。
BNSP-SFMは,11種類の最先端手法と比較して,予測精度を最大50%向上することを示す。
論文 参考訳(メタデータ) (2023-07-04T16:45:21Z) - Planning with Diffusion for Flexible Behavior Synthesis [125.24438991142573]
我々は、できるだけ多くの軌道最適化パイプラインをモデリング問題に折り畳むことがどう見えるか検討する。
我々の技術的アプローチの核心は、軌道を反復的にデノベーションすることで計画する拡散確率モデルにある。
論文 参考訳(メタデータ) (2022-05-20T07:02:03Z) - From Cognitive to Computational Modeling: Text-based Risky
Decision-Making Guided by Fuzzy Trace Theory [5.154015755506085]
ファジィトレース理論(FTT)は、ジストを組み込むことで人間の意思決定を説明する強力なパラダイムである。
本稿では,テキストに基づく意思決定におけるセマンティクスと感情の影響を組み合わせた計算フレームワークを提案する。
特にカテゴリー2-を導入し、カテゴリー的ジストとカテゴリー的感情を学習し、グループや個人におけるリスクのある意思決定を予測するために、我々の計算モデルを最適化する方法を実証する。
論文 参考訳(メタデータ) (2022-05-15T02:25:28Z) - A Quantum-like Model for Predicting Human Decisions in the Entangled
Social Systems [0.7734726150561088]
量子情報理論における絡み合いの概念に着想を得た絡み合ったベイズネットワークを導入する。
意思決定過程の動的進化に対する社会の影響は、絡み合い尺度によってモデル化される。
結果は、PEQBNが不確実性の下での人間の決定をより現実的な予測を提供することを確認した。
論文 参考訳(メタデータ) (2021-11-27T14:03:55Z) - Generative Temporal Difference Learning for Infinite-Horizon Prediction [101.59882753763888]
我々は、無限確率的地平線を持つ環境力学の予測モデルである$gamma$-modelを導入する。
トレーニングタイムとテストタイムの複合的なエラーの間には、そのトレーニングが避けられないトレードオフを反映しているかについて議論する。
論文 参考訳(メタデータ) (2020-10-27T17:54:12Z) - Double Robust Representation Learning for Counterfactual Prediction [68.78210173955001]
そこで本稿では, 対実予測のための2次ロバスト表現を学習するための, スケーラブルな新しい手法を提案する。
我々は、個々の治療効果と平均的な治療効果の両方に対して、堅牢で効率的な対実的予測を行う。
このアルゴリズムは,実世界の最先端技術と合成データとの競合性能を示す。
論文 参考訳(メタデータ) (2020-10-15T16:39:26Z) - Decision-Making with Auto-Encoding Variational Bayes [71.44735417472043]
変分分布とは異なる後部近似を用いて意思決定を行うことが示唆された。
これらの理論的な結果から,最適モデルに関するいくつかの近似的提案を学習することを提案する。
おもちゃの例に加えて,単細胞RNAシークエンシングのケーススタディも紹介する。
論文 参考訳(メタデータ) (2020-02-17T19:23:36Z) - Predicting human decisions with behavioral theories and machine learning [13.000185375686325]
BEAST Gradient Boosting (BEAST-GB) は,行動理論を機械学習技術と相乗する新しいハイブリッドモデルである。
BEAST-GBは,人的リスク選択のデータセットとして最大規模で,最先端のパフォーマンスを実現していることを示す。
また、BEAST-GBは、新しい実験コンテキストにおける選択の振る舞いを効果的に予測するため、堅牢なドメイン一般化機能を示す。
論文 参考訳(メタデータ) (2019-04-15T06:12:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。