A Deep Learning Based Ternary Task Classification System Using Gramian
Angular Summation Field in fNIRS Neuroimaging Data
- URL: http://arxiv.org/abs/2101.05891v1
- Date: Thu, 14 Jan 2021 22:09:35 GMT
- Title: A Deep Learning Based Ternary Task Classification System Using Gramian
Angular Summation Field in fNIRS Neuroimaging Data
- Authors: Sajila D. Wickramaratne and Md Shaad Mahmud
- Abstract summary: Functional near-infrared spectroscopy (fNIRS) is a non-invasive, economical method used to study its blood flow pattern.
The proposed method converts the raw fNIRS time series data into an image using Gramian Angular Summation Field.
A Deep Convolutional Neural Network (CNN) based architecture is then used for task classification, including mental arithmetic, motor imagery, and idle state.
- Score: 0.15229257192293197
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Functional near-infrared spectroscopy (fNIRS) is a non-invasive, economical
method used to study its blood flow pattern. These patterns can be used to
classify tasks a subject is performing. Currently, most of the classification
systems use simple machine learning solutions for the classification of tasks.
These conventional machine learning methods, which are easier to implement and
interpret, usually suffer from low accuracy and undergo a complex preprocessing
phase before network training. The proposed method converts the raw fNIRS time
series data into an image using Gramian Angular Summation Field. A Deep
Convolutional Neural Network (CNN) based architecture is then used for task
classification, including mental arithmetic, motor imagery, and idle state.
Further, this method can eliminate the feature selection stage, which affects
the traditional classifiers' performance. This system obtained 87.14% average
classification accuracy higher than any other method for the dataset.
Related papers
- Informative regularization for a multi-layer perceptron RR Lyrae
classifier under data shift [3.303002683812084]
We propose a scalable and easily adaptable approach based on an informative regularization and an ad-hoc training procedure to mitigate the shift problem.
Our method provides a new path to incorporate knowledge from characteristic features into artificial neural networks to manage the underlying data shift problem.
arXiv Detail & Related papers (2023-03-12T02:49:19Z) - Adaptive Convolutional Dictionary Network for CT Metal Artifact
Reduction [62.691996239590125]
We propose an adaptive convolutional dictionary network (ACDNet) for metal artifact reduction.
Our ACDNet can automatically learn the prior for artifact-free CT images via training data and adaptively adjust the representation kernels for each input CT image.
Our method inherits the clear interpretability of model-based methods and maintains the powerful representation ability of learning-based methods.
arXiv Detail & Related papers (2022-05-16T06:49:36Z) - Inducing Gaussian Process Networks [80.40892394020797]
We propose inducing Gaussian process networks (IGN), a simple framework for simultaneously learning the feature space as well as the inducing points.
The inducing points, in particular, are learned directly in the feature space, enabling a seamless representation of complex structured domains.
We report on experimental results for real-world data sets showing that IGNs provide significant advances over state-of-the-art methods.
arXiv Detail & Related papers (2022-04-21T05:27:09Z) - Do We Really Need a Learnable Classifier at the End of Deep Neural
Network? [118.18554882199676]
We study the potential of learning a neural network for classification with the classifier randomly as an ETF and fixed during training.
Our experimental results show that our method is able to achieve similar performances on image classification for balanced datasets.
arXiv Detail & Related papers (2022-03-17T04:34:28Z) - Compare Where It Matters: Using Layer-Wise Regularization To Improve
Federated Learning on Heterogeneous Data [0.0]
Federated Learning is a widely adopted method to train neural networks over distributed data.
One main limitation is the performance degradation that occurs when data is heterogeneously distributed.
We present FedCKA: a framework that out-performs previous state-of-the-art methods on various deep learning tasks.
arXiv Detail & Related papers (2021-12-01T10:46:13Z) - Rank-R FNN: A Tensor-Based Learning Model for High-Order Data
Classification [69.26747803963907]
Rank-R Feedforward Neural Network (FNN) is a tensor-based nonlinear learning model that imposes Canonical/Polyadic decomposition on its parameters.
First, it handles inputs as multilinear arrays, bypassing the need for vectorization, and can thus fully exploit the structural information along every data dimension.
We establish the universal approximation and learnability properties of Rank-R FNN, and we validate its performance on real-world hyperspectral datasets.
arXiv Detail & Related papers (2021-04-11T16:37:32Z) - A Ternary Bi-Directional LSTM Classification for Brain Activation
Pattern Recognition Using fNIRS [0.15229257192293197]
Functional near-infrared spectroscopy (fNIRS) is a non-invasive, low-cost method used to study the brain's blood flow pattern.
The proposed system uses a Bi-Directional LSTM based deep learning architecture for task classification.
arXiv Detail & Related papers (2021-01-14T22:21:15Z) - A Meta-Learning Approach to the Optimal Power Flow Problem Under
Topology Reconfigurations [69.73803123972297]
We propose a DNN-based OPF predictor that is trained using a meta-learning (MTL) approach.
The developed OPF-predictor is validated through simulations using benchmark IEEE bus systems.
arXiv Detail & Related papers (2020-12-21T17:39:51Z) - Fast Few-Shot Classification by Few-Iteration Meta-Learning [173.32497326674775]
We introduce a fast optimization-based meta-learning method for few-shot classification.
Our strategy enables important aspects of the base learner objective to be learned during meta-training.
We perform a comprehensive experimental analysis, demonstrating the speed and effectiveness of our approach.
arXiv Detail & Related papers (2020-10-01T15:59:31Z) - NASirt: AutoML based learning with instance-level complexity information [0.0]
We present NASirt, an AutoML methodology that finds high accuracy CNN architectures for spectral datasets.
Our method performs, in most cases, better than the benchmarks, achieving average accuracy as high as 97.40%.
arXiv Detail & Related papers (2020-08-26T22:21:44Z) - Biologically-Motivated Deep Learning Method using Hierarchical
Competitive Learning [0.0]
I propose to introduce unsupervised competitive learning which only requires forward propagating signals as a pre-training method for CNNs.
The proposed method could be useful for a variety of poorly labeled data, for example, time series or medical data.
arXiv Detail & Related papers (2020-01-04T20:07:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.