Informative regularization for a multi-layer perceptron RR Lyrae
classifier under data shift
- URL: http://arxiv.org/abs/2303.06544v1
- Date: Sun, 12 Mar 2023 02:49:19 GMT
- Title: Informative regularization for a multi-layer perceptron RR Lyrae
classifier under data shift
- Authors: Francisco P\'erez-Galarce and Karim Pichara and Pablo Huijse and
M\'arcio Catelan and Domingo Mery
- Abstract summary: We propose a scalable and easily adaptable approach based on an informative regularization and an ad-hoc training procedure to mitigate the shift problem.
Our method provides a new path to incorporate knowledge from characteristic features into artificial neural networks to manage the underlying data shift problem.
- Score: 3.303002683812084
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In recent decades, machine learning has provided valuable models and
algorithms for processing and extracting knowledge from time-series surveys.
Different classifiers have been proposed and performed to an excellent
standard. Nevertheless, few papers have tackled the data shift problem in
labeled training sets, which occurs when there is a mismatch between the data
distribution in the training set and the testing set. This drawback can damage
the prediction performance in unseen data. Consequently, we propose a scalable
and easily adaptable approach based on an informative regularization and an
ad-hoc training procedure to mitigate the shift problem during the training of
a multi-layer perceptron for RR Lyrae classification. We collect ranges for
characteristic features to construct a symbolic representation of prior
knowledge, which was used to model the informative regularizer component.
Simultaneously, we design a two-step back-propagation algorithm to integrate
this knowledge into the neural network, whereby one step is applied in each
epoch to minimize classification error, while another is applied to ensure
regularization. Our algorithm defines a subset of parameters (a mask) for each
loss function. This approach handles the forgetting effect, which stems from a
trade-off between these loss functions (learning from data versus learning
expert knowledge) during training. Experiments were conducted using recently
proposed shifted benchmark sets for RR Lyrae stars, outperforming baseline
models by up to 3\% through a more reliable classifier. Our method provides a
new path to incorporate knowledge from characteristic features into artificial
neural networks to manage the underlying data shift problem.
Related papers
- Adaptive Rentention & Correction for Continual Learning [114.5656325514408]
A common problem in continual learning is the classification layer's bias towards the most recent task.
We name our approach Adaptive Retention & Correction (ARC)
ARC achieves an average performance increase of 2.7% and 2.6% on the CIFAR-100 and Imagenet-R datasets.
arXiv Detail & Related papers (2024-05-23T08:43:09Z) - Rethinking Classifier Re-Training in Long-Tailed Recognition: A Simple
Logits Retargeting Approach [102.0769560460338]
We develop a simple logits approach (LORT) without the requirement of prior knowledge of the number of samples per class.
Our method achieves state-of-the-art performance on various imbalanced datasets, including CIFAR100-LT, ImageNet-LT, and iNaturalist 2018.
arXiv Detail & Related papers (2024-03-01T03:27:08Z) - Fixed Random Classifier Rearrangement for Continual Learning [0.5439020425819]
In visual classification scenario, neural networks inevitably forget the knowledge of old tasks after learning new ones.
We propose a continual learning algorithm named Fixed Random Rearrangement (FRCR)
arXiv Detail & Related papers (2024-02-23T09:43:58Z) - Enhancing Consistency and Mitigating Bias: A Data Replay Approach for
Incremental Learning [100.7407460674153]
Deep learning systems are prone to catastrophic forgetting when learning from a sequence of tasks.
To mitigate the problem, a line of methods propose to replay the data of experienced tasks when learning new tasks.
However, it is not expected in practice considering the memory constraint or data privacy issue.
As a replacement, data-free data replay methods are proposed by inverting samples from the classification model.
arXiv Detail & Related papers (2024-01-12T12:51:12Z) - Complementary Learning Subnetworks for Parameter-Efficient
Class-Incremental Learning [40.13416912075668]
We propose a rehearsal-free CIL approach that learns continually via the synergy between two Complementary Learning Subnetworks.
Our method achieves competitive results against state-of-the-art methods, especially in accuracy gain, memory cost, training efficiency, and task-order.
arXiv Detail & Related papers (2023-06-21T01:43:25Z) - Learning from Data with Noisy Labels Using Temporal Self-Ensemble [11.245833546360386]
Deep neural networks (DNNs) have an enormous capacity to memorize noisy labels.
Current state-of-the-art methods present a co-training scheme that trains dual networks using samples associated with small losses.
We propose a simple yet effective robust training scheme that operates by training only a single network.
arXiv Detail & Related papers (2022-07-21T08:16:31Z) - CAFA: Class-Aware Feature Alignment for Test-Time Adaptation [50.26963784271912]
Test-time adaptation (TTA) aims to address this challenge by adapting a model to unlabeled data at test time.
We propose a simple yet effective feature alignment loss, termed as Class-Aware Feature Alignment (CAFA), which simultaneously encourages a model to learn target representations in a class-discriminative manner.
arXiv Detail & Related papers (2022-06-01T03:02:07Z) - CMW-Net: Learning a Class-Aware Sample Weighting Mapping for Robust Deep
Learning [55.733193075728096]
Modern deep neural networks can easily overfit to biased training data containing corrupted labels or class imbalance.
Sample re-weighting methods are popularly used to alleviate this data bias issue.
We propose a meta-model capable of adaptively learning an explicit weighting scheme directly from data.
arXiv Detail & Related papers (2022-02-11T13:49:51Z) - Few-Shot Incremental Learning with Continually Evolved Classifiers [46.278573301326276]
Few-shot class-incremental learning (FSCIL) aims to design machine learning algorithms that can continually learn new concepts from a few data points.
The difficulty lies in that limited data from new classes not only lead to significant overfitting issues but also exacerbate the notorious catastrophic forgetting problems.
We propose a Continually Evolved CIF ( CEC) that employs a graph model to propagate context information between classifiers for adaptation.
arXiv Detail & Related papers (2021-04-07T10:54:51Z) - Meta-learning One-class Classifiers with Eigenvalue Solvers for
Supervised Anomaly Detection [55.888835686183995]
We propose a neural network-based meta-learning method for supervised anomaly detection.
We experimentally demonstrate that the proposed method achieves better performance than existing anomaly detection and few-shot learning methods.
arXiv Detail & Related papers (2021-03-01T01:43:04Z) - Two-Level Residual Distillation based Triple Network for Incremental
Object Detection [21.725878050355824]
We propose a novel incremental object detector based on Faster R-CNN to continuously learn from new object classes without using old data.
It is a triple network where an old model and a residual model as assistants for helping the incremental model learning on new classes without forgetting the previous learned knowledge.
arXiv Detail & Related papers (2020-07-27T11:04:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.