論文の概要: Recent Advances in Video Question Answering: A Review of Datasets and
Methods
- arxiv url: http://arxiv.org/abs/2101.05954v2
- Date: Thu, 18 Mar 2021 14:30:16 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-28 22:33:27.471342
- Title: Recent Advances in Video Question Answering: A Review of Datasets and
Methods
- Title(参考訳): ビデオ質問応答の最近の進歩:データセットと方法のレビュー
- Authors: Devshree Patel, Ratnam Parikh, and Yesha Shastri
- Abstract要約: VQAはビデオシーンから時間的・空間的な情報を検索し、解釈するのに役立つ。
我々の知る限りでは、VQAタスクに対する以前の調査は行われていない。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Video Question Answering (VQA) is a recent emerging challenging task in the
field of Computer Vision. Several visual information retrieval techniques like
Video Captioning/Description and Video-guided Machine Translation have preceded
the task of VQA. VQA helps to retrieve temporal and spatial information from
the video scenes and interpret it. In this survey, we review a number of
methods and datasets for the task of VQA. To the best of our knowledge, no
previous survey has been conducted for the VQA task.
- Abstract(参考訳): Video Question Answering (VQA) はコンピュータビジョン分野における近年の課題である。
Video Captioning/DescriptionやVideo-guided Machine Translationといった視覚情報検索技術がVQAのタスクに先行している。
VQAはビデオシーンから時間的・空間的な情報を検索し、解釈するのに役立つ。
本稿では,VQAの課題に対する多くの手法とデータセットについて概説する。
我々の知る限りでは、VQAタスクに対する以前の調査は行われていない。
関連論文リスト
- VQA$^2$: Visual Question Answering for Video Quality Assessment [76.81110038738699]
ビデオ品質アセスメント(VQA)は、低レベルの視覚知覚において古典的な分野である。
画像領域における最近の研究は、視覚質問応答(VQA)が視覚的品質を著しく低レベルに評価できることを示した。
VQA2インストラクションデータセットは,ビデオ品質評価に焦点をあてた最初の視覚的質問応答インストラクションデータセットである。
VQA2シリーズは、ビデオにおける空間的時間的品質の詳細の知覚を高めるために、視覚的および運動的トークンをインターリーブする。
論文 参考訳(メタデータ) (2024-11-06T09:39:52Z) - From Image to Language: A Critical Analysis of Visual Question Answering (VQA) Approaches, Challenges, and Opportunities [2.0681376988193843]
この研究は、VQAデータセットとフィールドの歴史に関するメソッドの複雑さを掘り下げる、VQA(Visual Question Answering)の領域における調査である。
我々はさらにVQAをマルチモーダルな質問応答に一般化し、VQAに関連する課題を探求し、今後の調査に向けた一連のオープンな問題を提示する。
論文 参考訳(メタデータ) (2023-11-01T05:39:41Z) - Learning to Answer Visual Questions from Web Videos [89.71617065426146]
我々は手動のアノテーションを回避し、ビデオ質問応答のための大規模なトレーニングデータセットを生成することを提案する。
我々は、テキストデータに基づいて訓練された質問生成変換器を利用して、書き起こされたビデオナレーションから質問応答ペアを生成する。
詳細な評価のために、言語バイアスの低減と高品質なマニュアルアノテーションを備えた新しいビデオQAデータセットiVQAを紹介する。
論文 参考訳(メタデータ) (2022-05-10T16:34:26Z) - Video Question Answering: Datasets, Algorithms and Challenges [99.9179674610955]
Video Question Answering (VideoQA) は、与えられたビデオに応じて自然言語の質問に答えることを目的としている。
本稿では、データセット、アルゴリズム、ユニークな課題に焦点を当てた、ビデオQAの明確な分類と包括的分析を提供する。
論文 参考訳(メタデータ) (2022-03-02T16:34:09Z) - Medical Visual Question Answering: A Survey [55.53205317089564]
VQA(Medicical Visual Question Answering)は、医療用人工知能と一般的なVQA課題の組み合わせである。
医療用VQAシステムは,医療用画像と自然言語による臨床的に関連性のある質問を前提として,妥当かつ説得力のある回答を予測することが期待されている。
論文 参考訳(メタデータ) (2021-11-19T05:55:15Z) - NExT-QA:Next Phase of Question-Answering to Explaining Temporal Actions [80.60423934589515]
NExT-QAは、厳密に設計されたビデオ質問回答(VideoQA)ベンチマークです。
因果的行動推論,時間的行動推論,共通場面理解を対象とする複数選択およびオープンエンドQAタスクを構築した。
トップパフォーマンスの手法は浅い場面記述に優れているが、因果的および時間的行動推論に弱い。
論文 参考訳(メタデータ) (2021-05-18T04:56:46Z) - A survey on VQA_Datasets and Approaches [0.0]
視覚的質問応答(VQA)は、コンピュータビジョンと自然言語処理の技法を組み合わせたタスクである。
本稿では、VQAタスクのために提案された既存のデータセット、メトリクス、モデルを検討および分析する。
論文 参考訳(メタデータ) (2021-05-02T08:50:30Z) - End-to-End Video Question-Answer Generation with Generator-Pretester
Network [27.31969951281815]
マルチメディアにおけるビデオ質問応答(VQA)課題に対するビデオ質問応答生成(VQAG)の課題について検討する。
キャプションはビデオを完全に表現してはいないし、実際に利用できないので、VQAG(Video Question-Answer Generation)によるビデオに基づいて質問対を生成することが不可欠である。
我々は,現在利用可能な2つの大規模ビデオQAデータセットで評価し,最先端の質問生成性能を実現する。
論文 参考訳(メタデータ) (2021-01-05T10:46:06Z) - Just Ask: Learning to Answer Questions from Millions of Narrated Videos [97.44376735445454]
我々は手動のアノテーションを回避し、ビデオ質問応答のための大規模なトレーニングデータセットを生成することを提案する。
我々は、テキストデータに基づいて訓練された質問生成変換器を利用して、書き起こされたビデオナレーションから質問応答ペアを生成する。
本手法は,MSRVTT-QA,MSVD-QA,ActivityNet-QA,How2QAにおいて高い性能を示す。
論文 参考訳(メタデータ) (2020-12-01T12:59:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。