論文の概要: Motion-Based Handwriting Recognition and Word Reconstruction
- arxiv url: http://arxiv.org/abs/2101.06025v1
- Date: Fri, 15 Jan 2021 09:24:04 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-28 18:44:56.234985
- Title: Motion-Based Handwriting Recognition and Word Reconstruction
- Title(参考訳): 動きに基づく手書き認識と単語再構成
- Authors: Junshen Kevin Chen, Wanze Xie, Yutong He
- Abstract要約: 動的プログラミングアルゴリズムと自動補正モデルからなる単語再構成パイプラインを設計する。
我々は、このパイプラインでモデルを最適化するための実験を行い、その後、このパイプラインを見えないデータ分布で利用するためにドメイン適応を利用する。
- 参考スコア(独自算出の注目度): 1.0742675209112622
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this project, we leverage a trained single-letter classifier to predict
the written word from a continuously written word sequence, by designing a word
reconstruction pipeline consisting of a dynamic-programming algorithm and an
auto-correction model. We conduct experiments to optimize models in this
pipeline, then employ domain adaptation to explore using this pipeline on
unseen data distributions.
- Abstract(参考訳): 本プロジェクトでは,動的プログラミングアルゴリズムと自動修正モデルからなる単語再構成パイプラインを設計し,学習した単文字分類器を用いて,連続的に書き込まれた単語列から単語を予測する。
我々は、このパイプラインでモデルを最適化するための実験を行い、その後、このパイプラインを見えないデータ分布で利用するためにドメイン適応を利用する。
関連論文リスト
- Pointer-Guided Pre-Training: Infusing Large Language Models with Paragraph-Level Contextual Awareness [3.2925222641796554]
ポインター誘導セグメントオーダリング(SO)は,段落レベルのテキスト表現の文脈的理解を高めることを目的とした,新しい事前学習手法である。
実験の結果,ポインタ誘導型事前学習は複雑な文書構造を理解する能力を大幅に向上させることがわかった。
論文 参考訳(メタデータ) (2024-06-06T15:17:51Z) - Scalable Learning of Latent Language Structure With Logical Offline
Cycle Consistency [71.42261918225773]
概念的には、LOCCOは、トレーニング対象のセマンティクスを使用してラベルなしテキストのアノテーションを生成する、自己学習の一形態と見なすことができる。
追加ボーナスとして、LOCCOによって生成されたアノテーションは、神経テキスト生成モデルをトレーニングするために自明に再利用することができる。
論文 参考訳(メタデータ) (2023-05-31T16:47:20Z) - Improving Text Auto-Completion with Next Phrase Prediction [9.385387026783103]
我々の戦略は、Next Phrase Prediction (NPP)と呼ばれる新しい自己指導型トレーニング目標を含む。
予備実験により,メールや学術書記ドメインの自動補完において,本手法がベースラインより優れていることが示された。
論文 参考訳(メタデータ) (2021-09-15T04:26:15Z) - Learning to Look Inside: Augmenting Token-Based Encoders with
Character-Level Information [29.633735942273997]
XRayEmbは、既存のトークンベースのモデルに文字レベルの情報を適合させる手法である。
我々は,XRayEmbの学習ベクトルを事前学習されたトークン埋め込みのシーケンスに組み込むことで,自己回帰型およびマスク付き事前学習されたトランスフォーマーアーキテクチャの性能を向上させることを示す。
論文 参考訳(メタデータ) (2021-08-01T08:09:26Z) - The Expando-Mono-Duo Design Pattern for Text Ranking with Pretrained
Sequence-to-Sequence Models [34.94331039746062]
拡張モノデュオ」と呼ばれるテキストランキング問題に対処する設計パターンを提案する。
基本となる設計は、標準のマルチステージランキングアーキテクチャ内で事前訓練されたシーケンスからシーケンスへのモデルに依存しています。
我々は、MS MARCOパスと文書ランキングタスク、TREC 2020 Deep Learning Track、そして設計を検証するTREC-COVIDチャレンジの実験的結果を示す。
論文 参考訳(メタデータ) (2021-01-14T15:29:54Z) - Latent Template Induction with Gumbel-CRFs [107.17408593510372]
文生成のための潜在テンプレートを推論するための構造化変分オートエンコーダについて検討する。
構造化推論ネットワークとして、トレーニング中に解釈可能なテンプレートを学習することを示す。
論文 参考訳(メタデータ) (2020-11-29T01:00:57Z) - Unsupervised Paraphrasing with Pretrained Language Models [85.03373221588707]
教師なし環境で,事前学習した言語モデルを用いて高品質なパラフレーズを生成する訓練パイプラインを提案する。
提案手法は,タスク適応,自己スーパービジョン,動的ブロッキング(Dynamic Blocking)という新しい復号アルゴリズムから構成される。
提案手法は,Quora Question PairとParaNMTの両方のデータセット上で,最先端の性能を達成できることを示す。
論文 参考訳(メタデータ) (2020-10-24T11:55:28Z) - Controllable Text Simplification with Explicit Paraphrasing [88.02804405275785]
テキストの単純化は、語彙パラフレーズ、削除、分割など、いくつかの書き換え変換を通じて文の可読性を向上させる。
現在の単純化システムは、主にシーケンス・ツー・シーケンスのモデルであり、これらすべての操作を同時に実行するためにエンドツーエンドで訓練されている。
そこで我々は,言語的に動機づけられた規則を用いて分割と削除を行い,それらをニューラルパラフレーズモデルと組み合わせて様々な書き直しスタイルを創出するハイブリッド手法を提案する。
論文 参考訳(メタデータ) (2020-10-21T13:44:40Z) - Improving Text Generation with Student-Forcing Optimal Transport [122.11881937642401]
トレーニングモードとテストモードで生成されたシーケンスに最適なトランスポート(OT)を提案する。
テキストシーケンスの構造的および文脈的情報に基づいて、OT学習を改善するための拡張も提案されている。
提案手法の有効性は,機械翻訳,テキスト要約,テキスト生成タスクにおいて検証される。
論文 参考訳(メタデータ) (2020-10-12T19:42:25Z) - Neural Syntactic Preordering for Controlled Paraphrase Generation [57.5316011554622]
私たちの研究は、構文変換を使用して、ソース文をソフトに"リオーダー"し、神経パラフレージングモデルをガイドします。
まず、入力文が与えられた場合、エンコーダ・デコーダモデルを用いて、実行可能な構文再構成のセットを導出する。
次に、提案した各再構成を用いて位置埋め込みのシーケンスを生成し、最終的なエンコーダ-デコーダパラフレーズモデルが特定の順序でソース語に従属することを奨励する。
論文 参考訳(メタデータ) (2020-05-05T09:02:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。