In Defense of Pseudo-Labeling: An Uncertainty-Aware Pseudo-label
Selection Framework for Semi-Supervised Learning
- URL: http://arxiv.org/abs/2101.06329v2
- Date: Thu, 18 Mar 2021 04:42:48 GMT
- Title: In Defense of Pseudo-Labeling: An Uncertainty-Aware Pseudo-label
Selection Framework for Semi-Supervised Learning
- Authors: Mamshad Nayeem Rizve, Kevin Duarte, Yogesh S Rawat, Mubarak Shah
- Abstract summary: Pseudo-labeling (PL) is a general SSL approach that does not have this constraint but performs relatively poorly in its original formulation.
We argue that PL underperforms due to the erroneous high confidence predictions from poorly calibrated models.
We propose an uncertainty-aware pseudo-label selection (UPS) framework which improves pseudo labeling accuracy by drastically reducing the amount of noise encountered in the training process.
- Score: 53.1047775185362
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The recent research in semi-supervised learning (SSL) is mostly dominated by
consistency regularization based methods which achieve strong performance.
However, they heavily rely on domain-specific data augmentations, which are not
easy to generate for all data modalities. Pseudo-labeling (PL) is a general SSL
approach that does not have this constraint but performs relatively poorly in
its original formulation. We argue that PL underperforms due to the erroneous
high confidence predictions from poorly calibrated models; these predictions
generate many incorrect pseudo-labels, leading to noisy training. We propose an
uncertainty-aware pseudo-label selection (UPS) framework which improves pseudo
labeling accuracy by drastically reducing the amount of noise encountered in
the training process. Furthermore, UPS generalizes the pseudo-labeling process,
allowing for the creation of negative pseudo-labels; these negative
pseudo-labels can be used for multi-label classification as well as negative
learning to improve the single-label classification. We achieve strong
performance when compared to recent SSL methods on the CIFAR-10 and CIFAR-100
datasets. Also, we demonstrate the versatility of our method on the video
dataset UCF-101 and the multi-label dataset Pascal VOC.
Related papers
- Learning Label Refinement and Threshold Adjustment for Imbalanced Semi-Supervised Learning [6.904448748214652]
Semi-supervised learning algorithms struggle to perform well when exposed to imbalanced training data.
We introduce SEmi-supervised learning with pseudo-label optimization based on VALidation data (SEVAL)
SEVAL adapts to specific tasks with improved pseudo-labels accuracy and ensures pseudo-labels correctness on a per-class basis.
arXiv Detail & Related papers (2024-07-07T13:46:22Z) - A Channel-ensemble Approach: Unbiased and Low-variance Pseudo-labels is Critical for Semi-supervised Classification [61.473485511491795]
Semi-supervised learning (SSL) is a practical challenge in computer vision.
Pseudo-label (PL) methods, e.g., FixMatch and FreeMatch, obtain the State Of The Art (SOTA) performances in SSL.
We propose a lightweight channel-based ensemble method to consolidate multiple inferior PLs into the theoretically guaranteed unbiased and low-variance one.
arXiv Detail & Related papers (2024-03-27T09:49:37Z) - Boosting Semi-Supervised Learning by bridging high and low-confidence
predictions [4.18804572788063]
Pseudo-labeling is a crucial technique in semi-supervised learning (SSL)
We propose a new method called ReFixMatch, which aims to utilize all of the unlabeled data during training.
arXiv Detail & Related papers (2023-08-15T00:27:18Z) - Class-Distribution-Aware Pseudo Labeling for Semi-Supervised Multi-Label
Learning [97.88458953075205]
Pseudo-labeling has emerged as a popular and effective approach for utilizing unlabeled data.
This paper proposes a novel solution called Class-Aware Pseudo-Labeling (CAP) that performs pseudo-labeling in a class-aware manner.
arXiv Detail & Related papers (2023-05-04T12:52:18Z) - InPL: Pseudo-labeling the Inliers First for Imbalanced Semi-supervised
Learning [34.062061310242385]
We present a new perspective of pseudo-labeling for imbalanced semi-supervised learning (SSL)
We measure whether an unlabeled sample is likely to be in-distribution'' or out-of-distribution''
Experiments demonstrate that our energy-based pseudo-labeling method, textbfInPL, significantly outperforms confidence-based methods on imbalanced SSL benchmarks.
arXiv Detail & Related papers (2023-03-13T16:45:41Z) - SoftMatch: Addressing the Quantity-Quality Trade-off in Semi-supervised
Learning [101.86916775218403]
This paper revisits the popular pseudo-labeling methods via a unified sample weighting formulation.
We propose SoftMatch to overcome the trade-off by maintaining both high quantity and high quality of pseudo-labels during training.
In experiments, SoftMatch shows substantial improvements across a wide variety of benchmarks, including image, text, and imbalanced classification.
arXiv Detail & Related papers (2023-01-26T03:53:25Z) - Boosting Semi-Supervised Learning with Contrastive Complementary
Labeling [11.851898765002334]
A popular approach is pseudo-labeling that generates pseudo labels only for those unlabeled data with high-confidence predictions.
We highlight that data with low-confidence pseudo labels can be still beneficial to the training process.
Inspired by this, we propose a novel Contrastive Complementary Labeling (CCL) method that constructs a large number of reliable negative pairs.
arXiv Detail & Related papers (2022-12-13T15:25:49Z) - Dash: Semi-Supervised Learning with Dynamic Thresholding [72.74339790209531]
We propose a semi-supervised learning (SSL) approach that uses unlabeled examples to train models.
Our proposed approach, Dash, enjoys its adaptivity in terms of unlabeled data selection.
arXiv Detail & Related papers (2021-09-01T23:52:29Z) - Distribution Aligning Refinery of Pseudo-label for Imbalanced
Semi-supervised Learning [126.31716228319902]
We develop Distribution Aligning Refinery of Pseudo-label (DARP) algorithm.
We show that DARP is provably and efficiently compatible with state-of-the-art SSL schemes.
arXiv Detail & Related papers (2020-07-17T09:16:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.