論文の概要: A Survey on Extraction of Causal Relations from Natural Language Text
- arxiv url: http://arxiv.org/abs/2101.06426v2
- Date: Mon, 1 Nov 2021 02:07:11 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-15 01:02:37.691774
- Title: A Survey on Extraction of Causal Relations from Natural Language Text
- Title(参考訳): 自然言語テキストからの因果関係の抽出に関する調査
- Authors: Jie Yang, Soyeon Caren Han, Josiah Poon
- Abstract要約: 因果関係はテキストに頻繁に現れ、テキストから因果関係を計算することで、予測タスクのための因果関係を構築するのに役立つ。
既存の因果抽出技術には、知識ベース、統計機械学習(ML)ベース、深層学習ベースアプローチなどがある。
- 参考スコア(独自算出の注目度): 9.317718453037667
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As an essential component of human cognition, cause-effect relations appear
frequently in text, and curating cause-effect relations from text helps in
building causal networks for predictive tasks. Existing causality extraction
techniques include knowledge-based, statistical machine learning(ML)-based, and
deep learning-based approaches. Each method has its advantages and weaknesses.
For example, knowledge-based methods are understandable but require extensive
manual domain knowledge and have poor cross-domain applicability. Statistical
machine learning methods are more automated because of natural language
processing (NLP) toolkits. However, feature engineering is labor-intensive, and
toolkits may lead to error propagation. In the past few years, deep learning
techniques attract substantial attention from NLP researchers because of its'
powerful representation learning ability and the rapid increase in
computational resources. Their limitations include high computational costs and
a lack of adequate annotated training data. In this paper, we conduct a
comprehensive survey of causality extraction. We initially introduce primary
forms existing in the causality extraction: explicit intra-sentential
causality, implicit causality, and inter-sentential causality. Next, we list
benchmark datasets and modeling assessment methods for causal relation
extraction. Then, we present a structured overview of the three techniques with
their representative systems. Lastly, we highlight existing open challenges
with their potential directions.
- Abstract(参考訳): 人間の認知の重要な要素として、因果関係はテキストに頻繁に現れ、テキストから因果関係を計算することで、予測タスクのための因果関係を構築するのに役立つ。
既存の因果抽出技術には、知識ベース、統計機械学習(ML)ベース、深層学習ベースアプローチなどがある。
各メソッドには長所と短所がある。
例えば、知識ベースのメソッドは理解できるが、広範な手動のドメイン知識が必要であり、ドメイン間の適用性が低い。
統計的機械学習手法は自然言語処理(NLP)ツールキットによってより自動化される。
しかし、機能工学は労働集約的であり、ツールキットはエラー伝播を引き起こす可能性がある。
近年,その強力な表現学習能力と計算資源の急速な増加により,深層学習技術がNLP研究者から注目を集めている。
その制限には、高い計算コストと適切な注釈付きトレーニングデータの欠如が含まれる。
本稿では,因果抽出に関する総合的な調査を行う。
まず, 因果関係抽出における一次形式, 明示的因果関係, 暗黙的因果関係, および相互因果関係について紹介する。
次に、因果関係抽出のためのベンチマークデータセットとモデリングアセスメント手法をリストアップする。
そこで本研究では,3つの手法を代表システムで概説する。
最後に、既存のオープンチャレンジを潜在的な方向性で強調する。
関連論文リスト
- GIVE: Structured Reasoning with Knowledge Graph Inspired Veracity Extrapolation [108.2008975785364]
Graph Inspired Veracity Extrapolation (GIVE)は、パラメトリックメモリと非パラメトリックメモリを統合する新しい推論フレームワークである。
本手法は,ゴールド回答検索ではなく,専門家の問題解決に類似した論理的・段階的推論手法を提案する。
論文 参考訳(メタデータ) (2024-10-11T03:05:06Z) - Maximizing Relation Extraction Potential: A Data-Centric Study to Unveil Challenges and Opportunities [3.8087810875611896]
本稿では,ニューラルリレーション抽出を阻害するデータ中心特性について検討する。
それは、文脈の曖昧さ、関係関係の関連、長い尾のデータ、きめ細かい関係の分布など、重要な問題を強調している。
これらの問題を緩和するための将来の方向性を示すマーカーをセットし、初心者や先進的な研究者にとって重要なリソースであることを証明している。
論文 参考訳(メタデータ) (2024-09-07T23:40:47Z) - ContextGPT: Infusing LLMs Knowledge into Neuro-Symbolic Activity
Recognition Models [0.3277163122167433]
本研究では,人間活動に関する常識知識から抽出する新しいプロンプトエンジニアリング手法であるContextGPTを提案する。
2つの公開データセットで行った評価は、ContextGPTから常識知識を注入することで得られるNeSyモデルがデータ不足のシナリオにどのように有効であるかを示す。
論文 参考訳(メタデータ) (2024-03-11T10:32:23Z) - Multi-modal Causal Structure Learning and Root Cause Analysis [67.67578590390907]
根本原因局所化のためのマルチモーダル因果構造学習手法であるMulanを提案する。
ログ選択言語モデルを利用してログ表現学習を行い、ログシーケンスを時系列データに変換する。
また、モダリティの信頼性を評価し、最終因果グラフを共同学習するための新しいキーパフォーマンスインジケータ対応アテンション機構も導入する。
論文 参考訳(メタデータ) (2024-02-04T05:50:38Z) - DIVKNOWQA: Assessing the Reasoning Ability of LLMs via Open-Domain
Question Answering over Knowledge Base and Text [73.68051228972024]
大きな言語モデル(LLM)は印象的な生成能力を示すが、内部知識に依存すると幻覚に悩まされる。
検索拡張LDMは、外部知識においてLLMを基盤とする潜在的な解決策として出現している。
論文 参考訳(メタデータ) (2023-10-31T04:37:57Z) - A Meta-Reinforcement Learning Algorithm for Causal Discovery [3.4806267677524896]
因果構造は、モデルが純粋な相関に基づく推論を超えることを可能にする。
データから因果構造を見つけることは、計算の労力と精度の両方において大きな課題となる。
我々は,介入を学習することで因果発見を行うメタ強化学習アルゴリズムを開発した。
論文 参考訳(メタデータ) (2022-07-18T09:26:07Z) - Sample-Efficient Reinforcement Learning in the Presence of Exogenous
Information [77.19830787312743]
実世界の強化学習アプリケーションでは、学習者の観察空間は、その課題に関する関連情報と無関係情報の両方でユビキタスに高次元である。
本稿では,強化学習のための新しい問題設定法であるExogenous Decision Process (ExoMDP)を導入する。
内因性成分の大きさのサンプル複雑度で準最適ポリシーを学習するアルゴリズムであるExoRLを提案する。
論文 参考訳(メタデータ) (2022-06-09T05:19:32Z) - SAIS: Supervising and Augmenting Intermediate Steps for Document-Level
Relation Extraction [51.27558374091491]
本稿では,関係抽出のための中間ステップ(SAIS)を監督し,拡張することにより,関連コンテキストやエンティティタイプをキャプチャするモデルを明示的に教えることを提案する。
そこで本提案手法は,より効果的な管理を行うため,より優れた品質の関係を抽出するだけでなく,それに対応する証拠をより正確に抽出する。
論文 参考訳(メタデータ) (2021-09-24T17:37:35Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
反現実的な説明は、望ましい結果を達成するために変更が必要な機能のセットをエンドユーザに提供することを目的としています。
現在のアプローチでは、提案された説明を達成するために必要な行動の実現可能性を考慮することはめったにない。
本稿では,非現実的説明を生成する手法として,潜時空間における干渉としての対実的説明(CEILS)を提案する。
論文 参考訳(メタデータ) (2021-06-14T20:48:48Z) - Information fusion between knowledge and data in Bayesian network
structure learning [5.994412766684843]
本稿では,オープンソースのベイジィス構造学習システムで実装された情報融合手法について述べる。
結果は、限定データとビッグデータの両方で示され、ベイジスで利用可能なBN構造学習アルゴリズムが3つ適用されている。
論文 参考訳(メタデータ) (2021-01-31T15:45:29Z) - Causal Discovery from Incomplete Data: A Deep Learning Approach [21.289342482087267]
因果構造探索と因果構造探索を反復的に行うために, 因果学習を提案する。
ICLは、異なるデータメカニズムで最先端の手法より優れていることを示す。
論文 参考訳(メタデータ) (2020-01-15T14:28:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。