Adversarial cycle-consistent synthesis of cerebral microbleeds for data
augmentation
- URL: http://arxiv.org/abs/2101.06468v1
- Date: Sat, 16 Jan 2021 15:58:17 GMT
- Title: Adversarial cycle-consistent synthesis of cerebral microbleeds for data
augmentation
- Authors: Khrystyna Faryna, Kevin Koschmieder, Marcella M. Paul, Thomas van den
Heuvel, Anke van der Eerden, Rashindra Manniesing, Bram van Ginneken
- Abstract summary: We propose a novel framework for controllable pathological image synthesis for data augmentation.
Inspired by CycleGAN, we perform cycle-consistent image-to-image translation between two domains: healthy and pathological.
We demonstrate our approach on an institutional dataset of cerebral microbleeds in traumatic brain injury patients.
- Score: 5.674961386020127
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a novel framework for controllable pathological image synthesis
for data augmentation. Inspired by CycleGAN, we perform cycle-consistent
image-to-image translation between two domains: healthy and pathological.
Guided by a semantic mask, an adversarially trained generator synthesizes
pathology on a healthy image in the specified location. We demonstrate our
approach on an institutional dataset of cerebral microbleeds in traumatic brain
injury patients. We utilize synthetic images generated with our method for data
augmentation in cerebral microbleeds detection. Enriching the training dataset
with synthetic images exhibits the potential to increase detection performance
for cerebral microbleeds in traumatic brain injury patients.
Related papers
- Evaluating Utility of Memory Efficient Medical Image Generation: A Study on Lung Nodule Segmentation [0.0]
This work proposes a memory-efficient patch-wise denoising diffusion probabilistic model (DDPM) for generating synthetic medical images.
Our approach generates high-utility synthetic images with nodule segmentation while efficiently managing memory constraints.
We evaluate the method in two scenarios: training a segmentation model exclusively on synthetic data, and augmenting real-world training data with synthetic images.
arXiv Detail & Related papers (2024-10-16T13:20:57Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
We introduce a self-supervised deep learning architecture to segment catheters in longitudinal ultrasound images.
The network architecture builds upon AiAReSeg, a segmentation transformer built with the Attention in Attention mechanism.
We validated our model on a test dataset, consisting of unseen synthetic data and images collected from silicon aorta phantoms.
arXiv Detail & Related papers (2024-03-21T15:13:36Z) - NeuroCine: Decoding Vivid Video Sequences from Human Brain Activties [23.893490180665996]
We introduce NeuroCine, a novel dual-phase framework to targeting the inherent challenges of decoding fMRI data.
tested on a publicly available fMRI dataset, our method shows promising results.
Our attention analysis suggests that the model aligns with existing brain structures and functions, indicating its biological plausibility and interpretability.
arXiv Detail & Related papers (2024-02-02T17:34:25Z) - Disentangled Multimodal Brain MR Image Translation via Transformer-based
Modality Infuser [12.402947207350394]
We propose a transformer-based modality infuser designed to synthesize multimodal brain MR images.
In our method, we extract modality-agnostic features from the encoder and then transform them into modality-specific features.
We carried out experiments on the BraTS 2018 dataset, translating between four MR modalities.
arXiv Detail & Related papers (2024-02-01T06:34:35Z) - Style transfer between Microscopy and Magnetic Resonance Imaging via
Generative Adversarial Network in small sample size settings [49.84018914962972]
Cross-modal augmentation of Magnetic Resonance Imaging (MRI) and microscopic imaging based on the same tissue samples is promising.
We tested a method for generating microscopic histological images from MRI scans of the corpus callosum using conditional generative adversarial network (cGAN) architecture.
arXiv Detail & Related papers (2023-10-16T13:58:53Z) - Joint fMRI Decoding and Encoding with Latent Embedding Alignment [77.66508125297754]
We introduce a unified framework that addresses both fMRI decoding and encoding.
Our model concurrently recovers visual stimuli from fMRI signals and predicts brain activity from images within a unified framework.
arXiv Detail & Related papers (2023-03-26T14:14:58Z) - BrainCLIP: Bridging Brain and Visual-Linguistic Representation Via CLIP
for Generic Natural Visual Stimulus Decoding [51.911473457195555]
BrainCLIP is a task-agnostic fMRI-based brain decoding model.
It bridges the modality gap between brain activity, image, and text.
BrainCLIP can reconstruct visual stimuli with high semantic fidelity.
arXiv Detail & Related papers (2023-02-25T03:28:54Z) - TBI-GAN: An Adversarial Learning Approach for Data Synthesis on
Traumatic Brain Segmentation [14.183809518138242]
We propose a novel medical image inpainting model named TBI-GAN to synthesize TBI MR scans with paired brain label maps.
The main strength of our TBI-GAN method is that it can generate TBI images and corresponding label maps simultaneously.
Experimental results show that the proposed TBI-GAN method can produce sufficient synthesized TBI images with high quality and valid label maps.
arXiv Detail & Related papers (2022-08-12T03:33:08Z) - Subject-Specific Lesion Generation and Pseudo-Healthy Synthesis for
Multiple Sclerosis Brain Images [1.7328025136996081]
We present a novel generative method for modelling the local lesion characteristics.
It can generate synthetic lesions on healthy images and synthesize subject-specific pseudo-healthy images from pathological images.
The proposed method can be used as a data augmentation module to generate synthetic images for training brain image segmentation networks.
arXiv Detail & Related papers (2022-08-03T15:12:55Z) - Cross-Modality Neuroimage Synthesis: A Survey [71.27193056354741]
Multi-modality imaging improves disease diagnosis and reveals distinct deviations in tissues with anatomical properties.
The existence of completely aligned and paired multi-modality neuroimaging data has proved its effectiveness in brain research.
An alternative solution is to explore unsupervised or weakly supervised learning methods to synthesize the absent neuroimaging data.
arXiv Detail & Related papers (2022-02-14T19:29:08Z) - Diffusion-Weighted Magnetic Resonance Brain Images Generation with
Generative Adversarial Networks and Variational Autoencoders: A Comparison
Study [55.78588835407174]
We show that high quality, diverse and realistic-looking diffusion-weighted magnetic resonance images can be synthesized using deep generative models.
We present two networks, the Introspective Variational Autoencoder and the Style-Based GAN, that qualify for data augmentation in the medical field.
arXiv Detail & Related papers (2020-06-24T18:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.