ContextMRI: Enhancing Compressed Sensing MRI through Metadata Conditioning
- URL: http://arxiv.org/abs/2501.04284v2
- Date: Thu, 09 Jan 2025 01:58:41 GMT
- Title: ContextMRI: Enhancing Compressed Sensing MRI through Metadata Conditioning
- Authors: Hyungjin Chung, Dohun Lee, Zihui Wu, Byung-Hoon Kim, Katherine L. Bouman, Jong Chul Ye,
- Abstract summary: We propose ContextMRI, a text-conditioned diffusion model for MRI that integrates granular metadata into the reconstruction process.
We show that increasing the fidelity of metadata, ranging from slice location and contrast to patient age, sex, and pathology, systematically boosts reconstruction performance.
- Score: 51.26601171361753
- License:
- Abstract: Compressed sensing MRI seeks to accelerate MRI acquisition processes by sampling fewer k-space measurements and then reconstructing the missing data algorithmically. The success of these approaches often relies on strong priors or learned statistical models. While recent diffusion model-based priors have shown great potential, previous methods typically ignore clinically available metadata (e.g. patient demographics, imaging parameters, slice-specific information). In practice, metadata contains meaningful cues about the anatomy and acquisition protocol, suggesting it could further constrain the reconstruction problem. In this work, we propose ContextMRI, a text-conditioned diffusion model for MRI that integrates granular metadata into the reconstruction process. We train a pixel-space diffusion model directly on minimally processed, complex-valued MRI images. During inference, metadata is converted into a structured text prompt and fed to the model via CLIP text embeddings. By conditioning the prior on metadata, we unlock more accurate reconstructions and show consistent gains across multiple datasets, acceleration factors, and undersampling patterns. Our experiments demonstrate that increasing the fidelity of metadata, ranging from slice location and contrast to patient age, sex, and pathology, systematically boosts reconstruction performance. This work highlights the untapped potential of leveraging clinical context for inverse problems and opens a new direction for metadata-driven MRI reconstruction.
Related papers
- Advancing MRI Reconstruction: A Systematic Review of Deep Learning and Compressed Sensing Integration [1.167578793004766]
Long acquisition times can lead to patient discomfort, motion artifacts, and limiting real-time applications.
Deep learning (DL) has emerged as a powerful tool for improving MRI reconstruction.
arXiv Detail & Related papers (2025-01-24T01:07:58Z) - Domain-Agnostic Stroke Lesion Segmentation Using Physics-Constrained Synthetic Data [0.15749416770494706]
We propose two novel approaches using synthetic quantitative MRI (qMRI) images to enhance the robustness and generalisability of segmentation models.
We trained a qMRI estimation model to predict qMRI maps from MPRAGE images, which were used to simulate diverse MRI sequences for segmentation training.
A second approach built upon prior work in synthetic data for stroke lesion segmentation, generating qMRI maps from a dataset of tissue labels.
arXiv Detail & Related papers (2024-12-04T13:52:05Z) - Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
Off-resonance artifacts in magnetic resonance imaging (MRI) are visual distortions that occur when the actual resonant frequencies of spins within the imaging volume differ from the expected frequencies used to encode spatial information.
We propose to resolve these artifacts by lifting the 2D MRI reconstruction problem to 3D, introducing an additional "spectral" dimension to model this off-resonance.
arXiv Detail & Related papers (2023-11-22T05:44:51Z) - CMRxRecon: An open cardiac MRI dataset for the competition of
accelerated image reconstruction [62.61209705638161]
There has been growing interest in deep learning-based CMR imaging algorithms.
Deep learning methods require large training datasets.
This dataset includes multi-contrast, multi-view, multi-slice and multi-coil CMR imaging data from 300 subjects.
arXiv Detail & Related papers (2023-09-19T15:14:42Z) - Iterative Data Refinement for Self-Supervised MR Image Reconstruction [18.02961646651716]
We propose a data refinement framework for self-supervised MR image reconstruction.
We first analyze the reason of the performance gap between self-supervised and supervised methods.
Then, we design an effective self-supervised training data refinement method to reduce this data bias.
arXiv Detail & Related papers (2022-11-24T06:57:16Z) - CoRRECT: A Deep Unfolding Framework for Motion-Corrected Quantitative R2* Mapping [9.783361575598025]
CoRRECT is a unified deep unfolding (DU) framework for Quantitative MRI (qMRI)
It consists of a model-based end-to-end neural network, a method for motion-artifact reduction, and a self-supervised learning scheme.
Our results on experimentally collected multi-Gradient-Recalled Echo (mGRE) MRI data show that CoRRECT recovers motion and inhomogeneity artifact-free R2* maps in highly accelerated acquisition settings.
arXiv Detail & Related papers (2022-10-12T15:49:51Z) - A Path Towards Clinical Adaptation of Accelerated MRI [0.0]
We explore augmentations to neural network MRI image reconstructors to enhance their clinical relevancy.
We demonstrate that training reconstructors on MR signal data with variable acceleration factors can improve their average performance during a clinical patient scan by up to $2%$.
arXiv Detail & Related papers (2022-08-26T18:34:41Z) - Data and Physics Driven Learning Models for Fast MRI -- Fundamentals and
Methodologies from CNN, GAN to Attention and Transformers [72.047680167969]
This article aims to introduce the deep learning based data driven techniques for fast MRI including convolutional neural network and generative adversarial network based methods.
We will detail the research in coupling physics and data driven models for MRI acceleration.
Finally, we will demonstrate through a few clinical applications, explain the importance of data harmonisation and explainable models for such fast MRI techniques in multicentre and multi-scanner studies.
arXiv Detail & Related papers (2022-04-01T22:48:08Z) - Reference-based Magnetic Resonance Image Reconstruction Using Texture
Transforme [86.6394254676369]
We propose a novel Texture Transformer Module (TTM) for accelerated MRI reconstruction.
We formulate the under-sampled data and reference data as queries and keys in a transformer.
The proposed TTM can be stacked on prior MRI reconstruction approaches to further improve their performance.
arXiv Detail & Related papers (2021-11-18T03:06:25Z) - Robust Compressed Sensing MRI with Deep Generative Priors [84.69062247243953]
We present the first successful application of the CSGM framework on clinical MRI data.
We train a generative prior on brain scans from the fastMRI dataset, and show that posterior sampling via Langevin dynamics achieves high quality reconstructions.
arXiv Detail & Related papers (2021-08-03T08:52:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.