A Literature Review of Recent Graph Embedding Techniques for Biomedical
Data
- URL: http://arxiv.org/abs/2101.06569v2
- Date: Wed, 20 Jan 2021 10:21:55 GMT
- Title: A Literature Review of Recent Graph Embedding Techniques for Biomedical
Data
- Authors: Yankai Chen and Yaozu Wu and Shicheng Ma and Irwin King
- Abstract summary: Many graph-based learning methods have been proposed to analyze such type of data.
The main difficulty is how to handle high dimensionality and sparsity of the biomedical graphs.
graph embedding methods provide an effective and efficient way to address the above issues.
- Score: 36.446560017794845
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rapid development of biomedical software and hardware, a large
amount of relational data interlinking genes, proteins, chemical components,
drugs, diseases, and symptoms has been collected for modern biomedical
research. Many graph-based learning methods have been proposed to analyze such
type of data, giving a deeper insight into the topology and knowledge behind
the biomedical data, which greatly benefit to both academic research and
industrial application for human healthcare. However, the main difficulty is
how to handle high dimensionality and sparsity of the biomedical graphs.
Recently, graph embedding methods provide an effective and efficient way to
address the above issues. It converts graph-based data into a low dimensional
vector space where the graph structural properties and knowledge information
are well preserved. In this survey, we conduct a literature review of recent
developments and trends in applying graph embedding methods for biomedical
data. We also introduce important applications and tasks in the biomedical
domain as well as associated public biomedical datasets.
Related papers
- Diversifying Knowledge Enhancement of Biomedical Language Models using
Adapter Modules and Knowledge Graphs [54.223394825528665]
We develop an approach that uses lightweight adapter modules to inject structured biomedical knowledge into pre-trained language models.
We use two large KGs, the biomedical knowledge system UMLS and the novel biochemical OntoChem, with two prominent biomedical PLMs, PubMedBERT and BioLinkBERT.
We show that our methodology leads to performance improvements in several instances while keeping requirements in computing power low.
arXiv Detail & Related papers (2023-12-21T14:26:57Z) - Tertiary Lymphoid Structures Generation through Graph-based Diffusion [54.37503714313661]
In this work, we leverage state-of-the-art graph-based diffusion models to generate biologically meaningful cell-graphs.
We show that the adopted graph diffusion model is able to accurately learn the distribution of cells in terms of their tertiary lymphoid structures (TLS) content.
arXiv Detail & Related papers (2023-10-10T14:37:17Z) - A Comparative Study of Population-Graph Construction Methods and Graph
Neural Networks for Brain Age Regression [48.97251676778599]
In medical imaging, population graphs have demonstrated promising results, mostly for classification tasks.
extracting population graphs is a non-trivial task and can significantly impact the performance of Graph Neural Networks (GNNs)
In this work, we highlight the importance of a meaningful graph construction and experiment with different population-graph construction methods.
arXiv Detail & Related papers (2023-09-26T10:30:45Z) - Applying BioBERT to Extract Germline Gene-Disease Associations for Building a Knowledge Graph from the Biomedical Literature [0.0]
This paper presents SimpleGermKG, an automatic knowledge graph construction approach that connects germline genes and diseases.
For the extraction of genes and diseases, we employ BioBERT, a pre-trained BERT model on biomedical corpora.
For semantic relationships between articles, genes, and diseases, we implemented a part-whole relation approach.
Our knowledge graph contains 297 genes, 130 diseases, and 46,747 triples.
arXiv Detail & Related papers (2023-09-11T18:05:12Z) - Multimodal brain age estimation using interpretable adaptive
population-graph learning [58.99653132076496]
We propose a framework that learns a population graph structure optimized for the downstream task.
An attention mechanism assigns weights to a set of imaging and non-imaging features.
By visualizing the attention weights that were the most important for the graph construction, we increase the interpretability of the graph.
arXiv Detail & Related papers (2023-07-10T15:35:31Z) - Knowledge Graph Embeddings in the Biomedical Domain: Are They Useful? A
Look at Link Prediction, Rule Learning, and Downstream Polypharmacy Tasks [12.896135204106423]
This study aims to apply state-of-the-art knowledge graph embedding models in the context of a recent biomedical knowledge graph, BioKG.
We achieve a three-fold improvement in terms of performance based on the HITS@10 score over previous work on the same biomedical knowledge graph.
Results suggest that knowledge learnt from large biomedical knowledge graphs can be transferred to such downstream use cases.
arXiv Detail & Related papers (2023-05-31T16:04:25Z) - Graph-in-Graph (GiG): Learning interpretable latent graphs in
non-Euclidean domain for biological and healthcare applications [52.65389473899139]
Graphs are a powerful tool for representing and analyzing unstructured, non-Euclidean data ubiquitous in the healthcare domain.
Recent works have shown that considering relationships between input data samples have a positive regularizing effect for the downstream task.
We propose Graph-in-Graph (GiG), a neural network architecture for protein classification and brain imaging applications.
arXiv Detail & Related papers (2022-04-01T10:01:37Z) - BioIE: Biomedical Information Extraction with Multi-head Attention
Enhanced Graph Convolutional Network [9.227487525657901]
We propose Biomedical Information Extraction, a hybrid neural network to extract relations from biomedical text and unstructured medical reports.
We evaluate our model on two major biomedical relationship extraction tasks, chemical-disease relation and chemical-protein interaction, and a cross-hospital pan-cancer pathology report corpus.
arXiv Detail & Related papers (2021-10-26T13:19:28Z) - Biomedical Knowledge Graph Refinement and Completion using Graph
Representation Learning and Top-K Similarity Measure [1.4660617536303606]
This work demonstrates learning discrete representations of the integrated biomedical knowledge graph Chem2Bio2RD.
We perform a knowledge graph completion and refinement task using a simple top-K cosine similarity measure between the learned embedding vectors.
arXiv Detail & Related papers (2020-12-18T22:19:57Z) - Benchmark and Best Practices for Biomedical Knowledge Graph Embeddings [8.835844347471626]
We train several state-of-the-art knowledge graph embedding models on the SNOMED-CT knowledge graph.
We make a case for the importance of leveraging the multi-relational nature of knowledge graphs for learning biomedical knowledge representation.
arXiv Detail & Related papers (2020-06-24T14:47:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.