A Comparative Study of Population-Graph Construction Methods and Graph
Neural Networks for Brain Age Regression
- URL: http://arxiv.org/abs/2309.14816v1
- Date: Tue, 26 Sep 2023 10:30:45 GMT
- Title: A Comparative Study of Population-Graph Construction Methods and Graph
Neural Networks for Brain Age Regression
- Authors: Kyriaki-Margarita Bintsi, Tamara T. Mueller, Sophie Starck, Vasileios
Baltatzis, Alexander Hammers, Daniel Rueckert
- Abstract summary: In medical imaging, population graphs have demonstrated promising results, mostly for classification tasks.
extracting population graphs is a non-trivial task and can significantly impact the performance of Graph Neural Networks (GNNs)
In this work, we highlight the importance of a meaningful graph construction and experiment with different population-graph construction methods.
- Score: 48.97251676778599
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The difference between the chronological and biological brain age of a
subject can be an important biomarker for neurodegenerative diseases, thus
brain age estimation can be crucial in clinical settings. One way to
incorporate multimodal information into this estimation is through population
graphs, which combine various types of imaging data and capture the
associations among individuals within a population. In medical imaging,
population graphs have demonstrated promising results, mostly for
classification tasks. In most cases, the graph structure is pre-defined and
remains static during training. However, extracting population graphs is a
non-trivial task and can significantly impact the performance of Graph Neural
Networks (GNNs), which are sensitive to the graph structure. In this work, we
highlight the importance of a meaningful graph construction and experiment with
different population-graph construction methods and their effect on GNN
performance on brain age estimation. We use the homophily metric and graph
visualizations to gain valuable quantitative and qualitative insights on the
extracted graph structures. For the experimental evaluation, we leverage the UK
Biobank dataset, which offers many imaging and non-imaging phenotypes. Our
results indicate that architectures highly sensitive to the graph structure,
such as Graph Convolutional Network (GCN) and Graph Attention Network (GAT),
struggle with low homophily graphs, while other architectures, such as
GraphSage and Chebyshev, are more robust across different homophily ratios. We
conclude that static graph construction approaches are potentially insufficient
for the task of brain age estimation and make recommendations for alternative
research directions.
Related papers
- Balanced Graph Structure Information for Brain Disease Detection [6.799894169098717]
We propose Bargrain, which models two graph structures: filtered correlation matrix and optimal sample graph using graph convolution networks (GCNs)
Based on our extensive experiment, Bargrain outperforms state-of-the-art methods in classification tasks on brain disease datasets, as measured by average F1 scores.
arXiv Detail & Related papers (2023-12-30T06:50:52Z) - Multimodal brain age estimation using interpretable adaptive
population-graph learning [58.99653132076496]
We propose a framework that learns a population graph structure optimized for the downstream task.
An attention mechanism assigns weights to a set of imaging and non-imaging features.
By visualizing the attention weights that were the most important for the graph construction, we increase the interpretability of the graph.
arXiv Detail & Related papers (2023-07-10T15:35:31Z) - State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
Graph-level learning has been applied to many tasks including comparison, regression, classification, and more.
Traditional approaches to learning a set of graphs rely on hand-crafted features, such as substructures.
Deep learning has helped graph-level learning adapt to the growing scale of graphs by extracting features automatically and encoding graphs into low-dimensional representations.
arXiv Detail & Related papers (2023-01-14T09:15:49Z) - Contrastive Brain Network Learning via Hierarchical Signed Graph Pooling
Model [64.29487107585665]
Graph representation learning techniques on brain functional networks can facilitate the discovery of novel biomarkers for clinical phenotypes and neurodegenerative diseases.
Here, we propose an interpretable hierarchical signed graph representation learning model to extract graph-level representations from brain functional networks.
In order to further improve the model performance, we also propose a new strategy to augment functional brain network data for contrastive learning.
arXiv Detail & Related papers (2022-07-14T20:03:52Z) - Graph-in-Graph (GiG): Learning interpretable latent graphs in
non-Euclidean domain for biological and healthcare applications [52.65389473899139]
Graphs are a powerful tool for representing and analyzing unstructured, non-Euclidean data ubiquitous in the healthcare domain.
Recent works have shown that considering relationships between input data samples have a positive regularizing effect for the downstream task.
We propose Graph-in-Graph (GiG), a neural network architecture for protein classification and brain imaging applications.
arXiv Detail & Related papers (2022-04-01T10:01:37Z) - Supervised Contrastive Learning with Structure Inference for Graph
Classification [5.276232626689567]
We propose a graph neural network based on supervised contrastive learning and structure inference for graph classification.
With the integration of label information, the one-vs-many contrastive learning can be extended to a many-vs-many setting.
Experiment results show the effectiveness of the proposed method compared with recent state-of-the-art methods.
arXiv Detail & Related papers (2022-03-15T07:18:46Z) - Whole Brain Vessel Graphs: A Dataset and Benchmark for Graph Learning
and Neuroscience (VesselGraph) [3.846749674808336]
We present an extendable dataset of whole-brain vessel graphs based on specific imaging protocols.
We benchmark numerous state-of-the-art graph learning algorithms on the biologically relevant tasks of vessel prediction and vessel classification.
Our work paves a path towards advancing graph learning research into the field of neuroscience.
arXiv Detail & Related papers (2021-08-30T13:40:48Z) - Multilevel Graph Matching Networks for Deep Graph Similarity Learning [79.3213351477689]
We propose a multi-level graph matching network (MGMN) framework for computing the graph similarity between any pair of graph-structured objects.
To compensate for the lack of standard benchmark datasets, we have created and collected a set of datasets for both the graph-graph classification and graph-graph regression tasks.
Comprehensive experiments demonstrate that MGMN consistently outperforms state-of-the-art baseline models on both the graph-graph classification and graph-graph regression tasks.
arXiv Detail & Related papers (2020-07-08T19:48:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.