論文の概要: Heterogeneous Hand Guise Classification Based on Surface
Electromyographic Signals Using Multichannel Convolutional Neural Network
- arxiv url: http://arxiv.org/abs/2101.06715v1
- Date: Sun, 17 Jan 2021 17:02:04 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-27 20:16:11.947518
- Title: Heterogeneous Hand Guise Classification Based on Surface
Electromyographic Signals Using Multichannel Convolutional Neural Network
- Title(参考訳): マルチチャネル畳み込みニューラルネットワークを用いた表面筋電図信号に基づく不均質手振り分類
- Authors: Niloy Sikder, Abu Shamim Mohammad Arif, Abdullah-Al Nahid
- Abstract要約: 機械学習の分野での最近の進歩は、EMG信号を使って機械に人間の動作の複雑な特性を教えることができる。
現代の機械は、多数の人間の活動を検出し、それらの活動によって生成されたEMG信号のみに基づいて区別することができる。
本研究では,電力領域に現れる特性によって表面EMG信号を解釈する多チャンネル畳み込みニューラルネットワーク(CNN)を用いた新しい分類法について述べる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Electromyography (EMG) is a way of measuring the bioelectric activities that
take place inside the muscles. EMG is usually performed to detect abnormalities
within the nerves or muscles of a target area. The recent developments in the
field of Machine Learning allow us to use EMG signals to teach machines the
complex properties of human movements. Modern machines are capable of detecting
numerous human activities and distinguishing among them solely based on the EMG
signals produced by those activities. However, success in accomplishing this
task mostly depends on the learning technique used by the machine to analyze
EMG signals; and even the latest algorithms do not result in flawless
classification. In this study, a novel classification method has been described
employing a multichannel Convolutional Neural Network (CNN) that interprets
surface EMG signals by the properties they exhibit in the power domain. The
proposed method was tested on a well-established EMG dataset, and the result
yields very high classification accuracy. This learning model will help
researchers to develop prosthetic arms capable of detecting various hand
gestures to mimic them afterwards.
- Abstract(参考訳): 筋電図(Electromyography、EMG)は、筋内で発生する生体電気活動を測定する方法である。
EMGは通常、標的領域の神経や筋肉の異常を検出するために行われる。
機械学習の分野での最近の進歩により、EMG信号を使って機械に人間の動作の複雑な特性を教えることができる。
現代の機械は、多数の人間の活動を検出し、それらの活動によって生成されたEMG信号のみに基づいて区別することができる。
しかし、このタスクを成功させるには、主にEMG信号を解析するために機械が使用する学習技術に依存し、最新のアルゴリズムでさえも欠陥のない分類にはならない。
本研究では,電力領域に現れる特性によって表面EMG信号を解釈する多チャンネル畳み込みニューラルネットワーク(CNN)を用いた新しい分類法について述べる。
提案手法は確立されたEMGデータセットで検証され,高い分類精度が得られた。
この学習モデルは、研究者が様々な手の動きを検知し、その後模倣する義肢を開発するのに役立つ。
関連論文リスト
- Machine Learning-based sEMG Signal Classification for Hand Gesture Recognition [3.9440964696313485]
筋電図(EMG)信号を用いて手の動きを解析・分類する。
本稿では,新しい特徴抽出手法を用いてEMGに基づく手動作認識の性能をベンチマークすることを目的とする。
論文 参考訳(メタデータ) (2024-11-23T21:29:51Z) - emg2qwerty: A Large Dataset with Baselines for Touch Typing using Surface Electromyography [47.160223334501126]
emg2qwertyは、QWERTYキーボードでタッチ入力しながら手首に記録された非侵襲的筋電図信号の大規模なデータセットである。
1,135のセッションが108ユーザと346時間の録画にまたがっており、これまでで最大の公開データセットである。
sEMG信号のみを用いたキープレッシャの予測において,高いベースライン性能を示す。
論文 参考訳(メタデータ) (2024-10-26T05:18:48Z) - FORS-EMG: A Novel sEMG Dataset for Hand Gesture Recognition Across Multiple Forearm Orientations [1.3852370777848657]
表面筋電図(sEMG)信号はジェスチャー認識と頑健な義手発達に重要な可能性を秘めている。
本研究は、3つの異なる方向をまたいだ手の動きを評価するための新しいMFI sEMGデータセットを提案する。
論文 参考訳(メタデータ) (2024-09-03T14:23:06Z) - EMG-Based Hand Gesture Recognition through Diverse Domain Feature Enhancement and Machine Learning-Based Approach [1.8796659304823702]
表面筋電図(EMG)は手の動き認識と人間とコンピュータの相互作用において重要なツールである。
本研究では,EMG信号を用いた手動作の分類手法を提案する。
論文 参考訳(メタデータ) (2024-08-25T04:55:42Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
AAD(Auditory Attention Detection)は、マルチスピーカー環境で脳信号からターゲット話者を検出することを目的としている。
現在のアプローチは主に、画像のようなユークリッドデータを処理するために設計された従来の畳み込みニューラルネットワークに依存している。
本稿では、入力として音声刺激を必要としないAADのための動的グラフ自己蒸留(DGSD)手法を提案する。
論文 参考訳(メタデータ) (2023-09-07T13:43:46Z) - Upper Limb Movement Recognition utilising EEG and EMG Signals for
Rehabilitative Robotics [0.0]
上肢運動分類のための新しい決定レベル多センサ融合手法を提案する。
システムは脳波信号をEMG信号と統合し、両方の情報源から効果的な情報を取得し、ユーザの欲求を理解し予測する。
論文 参考訳(メタデータ) (2022-07-18T14:51:23Z) - Task-oriented Self-supervised Learning for Anomaly Detection in
Electroencephalography [51.45515911920534]
タスク指向型自己教師型学習手法を提案する。
大きなカーネルを持つ特定の2つの分岐畳み込みニューラルネットワークを特徴抽出器として設計する。
効果的に設計され、訓練された特徴抽出器は、より優れた特徴表現を脳波から抽出できることが示されている。
論文 参考訳(メタデータ) (2022-07-04T13:15:08Z) - Decision Forest Based EMG Signal Classification with Low Volume Dataset
Augmented with Random Variance Gaussian Noise [51.76329821186873]
我々は6種類の手振りを限定的なサンプル数で分類できるモデルを作成し、より広い聴衆によく一般化する。
信号のランダムなバウンドの使用など、より基本的な手法のセットにアピールするが、これらの手法がオンライン環境で持てる力を示したいと考えている。
論文 参考訳(メタデータ) (2022-06-29T23:22:18Z) - DriPP: Driven Point Processes to Model Stimuli Induced Patterns in M/EEG
Signals [62.997667081978825]
我々はDriPPと呼ばれる新しい統計点過程モデルを開発する。
我々は、このモデルのパラメータを推定するために、高速で原理化された予測最大化(EM)アルゴリズムを導出する。
標準MEGデータセットの結果から,我々の手法が事象関連ニューラルレスポンスを明らかにすることが示された。
論文 参考訳(メタデータ) (2021-12-08T13:07:21Z) - Continuous Decoding of Daily-Life Hand Movements from Forearm Muscle
Activity for Enhanced Myoelectric Control of Hand Prostheses [78.120734120667]
本研究では,前腕のEMG活性をハンドキネマティクスに連続的にマップする,長期記憶(LSTM)ネットワークに基づく新しい手法を提案する。
私たちの研究は、この困難なデータセットを使用するハンドキネマティクスの予測に関する最初の報告です。
提案手法は, 人工手指の複数のDOFの独立的, 比例的アクティベーションのための制御信号の生成に適していることが示唆された。
論文 参考訳(メタデータ) (2021-04-29T00:11:32Z) - Effect of Analysis Window and Feature Selection on Classification of
Hand Movements Using EMG Signal [0.20999222360659603]
近年,パターン認識(PR)に基づく筋電制御の研究は,機械学習分類器の助けを借りて有望な結果を示した。
複数のクラスの動きと直感的な制御を提供することで、日常的な生活運動を行うために切断対象に電力を供給することができる。
我々は,手の動きの分類精度を向上させるために,効率的なデータ前処理と最適な特徴選択が有効であることを示す。
論文 参考訳(メタデータ) (2020-02-02T19:03:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。