Intestinal Parasites Classification Using Deep Belief Networks
- URL: http://arxiv.org/abs/2101.06747v1
- Date: Sun, 17 Jan 2021 18:47:02 GMT
- Title: Intestinal Parasites Classification Using Deep Belief Networks
- Authors: Mateus Roder, Leandro A. Passos, Luiz Carlos Felix Ribeiro, Barbara
Caroline Benato, Alexandre Xavier Falc\~ao, Jo\~ao Paulo Papa
- Abstract summary: $4$ billion people are infected by intestinal parasites worldwide.
Human visual inspection is still in charge of the vast majority of clinical diagnoses.
We introduce Deep Belief Networks to the context of automatic intestinal parasites classification.
- Score: 53.20999552522241
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Currently, approximately $4$ billion people are infected by intestinal
parasites worldwide. Diseases caused by such infections constitute a public
health problem in most tropical countries, leading to physical and mental
disorders, and even death to children and immunodeficient individuals. Although
subjected to high error rates, human visual inspection is still in charge of
the vast majority of clinical diagnoses. In the past years, some works
addressed intelligent computer-aided intestinal parasites classification, but
they usually suffer from misclassification due to similarities between
parasites and fecal impurities. In this paper, we introduce Deep Belief
Networks to the context of automatic intestinal parasites classification.
Experiments conducted over three datasets composed of eggs, larvae, and
protozoa provided promising results, even considering unbalanced classes and
also fecal impurities.
Related papers
- Deep learning powered real-time identification of insects using citizen
science data [17.13608307250744]
InsectNet can identify invasive species, provide fine-grained insect species identification, and work effectively in challenging backgrounds.
It can also abstain from making predictions when uncertain, facilitating seamless human intervention and making it a practical and trustworthy tool.
arXiv Detail & Related papers (2023-06-04T23:56:53Z) - Paddy Leaf diseases identification on Infrared Images based on
Convolutional Neural Networks [0.0]
This paper implements a convolutional neural network (CNN) based on a model and tests a public dataset consisting of 636 infrared image samples.
The proposed model proficiently identified and classified paddy diseases of five different types and achieved an accuracy of 88.28%.
arXiv Detail & Related papers (2022-07-29T18:24:29Z) - Paddy Doctor: A Visual Image Dataset for Paddy Disease Classification [0.0]
Paddy Doctor is a visual image dataset for identifying paddy diseases.
Our dataset contains 13,876 annotated paddy leaf images across ten classes (nine diseases and normal leaf)
We benchmarked the Paddy Doctor using a Convolutional Neural Network (CNN) and two transfer learning approaches, VGG16 and MobileNet.
arXiv Detail & Related papers (2022-05-23T07:57:40Z) - High performing ensemble of convolutional neural networks for insect
pest image detection [124.23179560022761]
Pest infestation is a major cause of crop damage and lost revenues worldwide.
We generate ensembles of CNNs based on different topologies.
Two new Adam algorithms for deep network optimization are proposed.
arXiv Detail & Related papers (2021-08-28T00:49:11Z) - Parasitic Egg Detection and Classification in Low-cost Microscopic
Images using Transfer Learning [1.6050172226234583]
We propose a CNN-based technique using transfer learning strategy to enhance the efficiency of automatic parasite classification in poor-quality microscopic images.
Our proposed framework outperforms the state-of-the-art object recognition methods.
Our system combined with final decision from an expert may improve the real faecal examination with low-cost microscopes.
arXiv Detail & Related papers (2021-07-02T11:05:45Z) - Relational Subsets Knowledge Distillation for Long-tailed Retinal
Diseases Recognition [65.77962788209103]
We propose class subset learning by dividing the long-tailed data into multiple class subsets according to prior knowledge.
It enforces the model to focus on learning the subset-specific knowledge.
The proposed framework proved to be effective for the long-tailed retinal diseases recognition task.
arXiv Detail & Related papers (2021-04-22T13:39:33Z) - One-Shot Learning with Triplet Loss for Vegetation Classification Tasks [45.82374977939355]
Triplet loss function is one of the options that can significantly improve the accuracy of the One-shot Learning tasks.
Starting from 2015, many projects use Siamese networks and this kind of loss for face recognition and object classification.
arXiv Detail & Related papers (2020-12-14T10:44:22Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
We propose the use of Multi-Source Transfer Learning to improve upon traditional Transfer Learning for the classification of COVID-19 from CT scans.
With our multi-source fine-tuning approach, our models outperformed baseline models fine-tuned with ImageNet.
Our best performing model was able to achieve an accuracy of 0.893 and a Recall score of 0.897, outperforming its baseline Recall score by 9.3%.
arXiv Detail & Related papers (2020-09-22T11:53:06Z) - MOSQUITO-NET: A deep learning based CADx system for malaria diagnosis
along with model interpretation using GradCam and class activation maps [9.01199960262149]
Malaria is one of the deadliest diseases in today world which causes thousands of deaths per year.
The parasites responsible for malaria are scientifically known as Plasmodium which infects the red blood cells in human beings.
The diagnosis of malaria requires identification and manual counting of parasitized cells by medical practitioners in microscopic blood smears.
arXiv Detail & Related papers (2020-06-17T13:00:30Z) - Falling into the Echo Chamber: the Italian Vaccination Debate on Twitter [65.7192861893042]
We examine the extent to which the vaccination debate on Twitter is conductive to potential outreach to the vaccination hesitant.
We discover that the vaccination skeptics, as well as the advocates, reside in their own distinct "echo chambers"
At the center of these echo chambers we find the ardent supporters, for which we build highly accurate network- and content-based classifiers.
arXiv Detail & Related papers (2020-03-26T13:55:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.