Relational Subsets Knowledge Distillation for Long-tailed Retinal
Diseases Recognition
- URL: http://arxiv.org/abs/2104.11057v1
- Date: Thu, 22 Apr 2021 13:39:33 GMT
- Title: Relational Subsets Knowledge Distillation for Long-tailed Retinal
Diseases Recognition
- Authors: Lie Ju, Xin Wang, Lin Wang, Tongliang Liu, Xin Zhao, Tom Drummond,
Dwarikanath Mahapatra, Zongyuan Ge
- Abstract summary: We propose class subset learning by dividing the long-tailed data into multiple class subsets according to prior knowledge.
It enforces the model to focus on learning the subset-specific knowledge.
The proposed framework proved to be effective for the long-tailed retinal diseases recognition task.
- Score: 65.77962788209103
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the real world, medical datasets often exhibit a long-tailed data
distribution (i.e., a few classes occupy most of the data, while most classes
have rarely few samples), which results in a challenging imbalance learning
scenario. For example, there are estimated more than 40 different kinds of
retinal diseases with variable morbidity, however with more than 30+ conditions
are very rare from the global patient cohorts, which results in a typical
long-tailed learning problem for deep learning-based screening models. In this
study, we propose class subset learning by dividing the long-tailed data into
multiple class subsets according to prior knowledge, such as regions and
phenotype information. It enforces the model to focus on learning the
subset-specific knowledge. More specifically, there are some relational classes
that reside in the fixed retinal regions, or some common pathological features
are observed in both the majority and minority conditions. With those subsets
learnt teacher models, then we are able to distill the multiple teacher models
into a unified model with weighted knowledge distillation loss. The proposed
framework proved to be effective for the long-tailed retinal diseases
recognition task. The experimental results on two different datasets
demonstrate that our method is flexible and can be easily plugged into many
other state-of-the-art techniques with significant improvements.
Related papers
- Benchmarking In-the-wild Multimodal Disease Recognition and A Versatile Baseline [42.49727243388804]
We propose an in-the-wild multimodal plant disease recognition dataset.
It contains the largest number of disease classes but also text-based descriptions for each disease.
Our proposed dataset can be regarded as an ideal testbed for evaluating disease recognition methods in the real world.
arXiv Detail & Related papers (2024-08-06T11:49:13Z) - Mine yOur owN Anatomy: Revisiting Medical Image Segmentation with Extremely Limited Labels [54.58539616385138]
We introduce a novel semi-supervised 2D medical image segmentation framework termed Mine yOur owN Anatomy (MONA)
First, prior work argues that every pixel equally matters to the model training; we observe empirically that this alone is unlikely to define meaningful anatomical features.
Second, we construct a set of objectives that encourage the model to be capable of decomposing medical images into a collection of anatomical features.
arXiv Detail & Related papers (2022-09-27T15:50:31Z) - Continual Learning with Bayesian Model based on a Fixed Pre-trained
Feature Extractor [55.9023096444383]
Current deep learning models are characterised by catastrophic forgetting of old knowledge when learning new classes.
Inspired by the process of learning new knowledge in human brains, we propose a Bayesian generative model for continual learning.
arXiv Detail & Related papers (2022-04-28T08:41:51Z) - LifeLonger: A Benchmark for Continual Disease Classification [59.13735398630546]
We introduce LifeLonger, a benchmark for continual disease classification on the MedMNIST collection.
Task and class incremental learning of diseases address the issue of classifying new samples without re-training the models from scratch.
Cross-domain incremental learning addresses the issue of dealing with datasets originating from different institutions while retaining the previously obtained knowledge.
arXiv Detail & Related papers (2022-04-12T12:25:05Z) - Hierarchical Knowledge Guided Learning for Real-world Retinal Diseases
Recognition [20.88407972858568]
Some recently published datasets in ophthalmology AI consist of more than 40 kinds of retinal diseases with complex abnormalities and variable morbidity.
From a modeling perspective, most deep learning models trained on these datasets may lack the ability to generalize to rare diseases.
This paper presents a novel method that enables the deep neural network to learn from a long-tailed fundus database for various retinal disease recognition.
arXiv Detail & Related papers (2021-11-17T05:44:39Z) - Generalized Multi-Task Learning from Substantially Unlabeled
Multi-Source Medical Image Data [11.061381376559053]
MultiMix is a new multi-task learning model that jointly learns disease classification and anatomical segmentation in a semi-supervised manner.
Our experiments with varying quantities of multi-source labeled data in the training sets confirm the effectiveness of MultiMix.
arXiv Detail & Related papers (2021-10-25T18:09:19Z) - MultiMix: Sparingly Supervised, Extreme Multitask Learning From Medical
Images [13.690075845927606]
We propose a novel multitask learning model, namely MultiMix, which jointly learns disease classification and anatomical segmentation in a sparingly supervised manner.
Our experiments justify the effectiveness of our multitasking model for the classification of pneumonia and segmentation of lungs from chest X-ray images.
arXiv Detail & Related papers (2020-10-28T03:47:29Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
Group studies involving large cohorts of subjects are important to draw general conclusions about brain functional organization.
We propose a novel MultiView Independent Component Analysis model for group studies, where data from each subject are modeled as a linear combination of shared independent sources plus noise.
We demonstrate the usefulness of our approach first on fMRI data, where our model demonstrates improved sensitivity in identifying common sources among subjects.
arXiv Detail & Related papers (2020-06-11T17:29:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.