論文の概要: Abstractive Opinion Tagging
- arxiv url: http://arxiv.org/abs/2101.06880v2
- Date: Sun, 24 Jan 2021 11:39:53 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-27 06:00:26.238452
- Title: Abstractive Opinion Tagging
- Title(参考訳): 抽象オピニオンタグ
- Authors: Qintong Li, Piji Li, Xinyi Li, Zhaochun Ren, Zhumin Chen, Maarten de
Rijke
- Abstract要約: eコマースでは、意見タグは、アイテムのレビューの特徴を反映したEコマースプラットフォームが提供するタグのランクリストを指す。
意見タグを生成するための現在のメカニズムは、手作業またはラベル付け方法に依存します。
AOT-Net と呼ばれる抽象的な意見タグフレームワークを提案し、多数のレビューからランク付けされた意見タグのリストを生成します。
- 参考スコア(独自算出の注目度): 65.47649273721679
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In e-commerce, opinion tags refer to a ranked list of tags provided by the
e-commerce platform that reflect characteristics of reviews of an item. To
assist consumers to quickly grasp a large number of reviews about an item,
opinion tags are increasingly being applied by e-commerce platforms. Current
mechanisms for generating opinion tags rely on either manual labelling or
heuristic methods, which is time-consuming and ineffective. In this paper, we
propose the abstractive opinion tagging task, where systems have to
automatically generate a ranked list of opinion tags that are based on, but
need not occur in, a given set of user-generated reviews.
The abstractive opinion tagging task comes with three main challenges: (1)
the noisy nature of reviews; (2) the formal nature of opinion tags vs. the
colloquial language usage in reviews; and (3) the need to distinguish between
different items with very similar aspects. To address these challenges, we
propose an abstractive opinion tagging framework, named AOT-Net, to generate a
ranked list of opinion tags given a large number of reviews. First, a
sentence-level salience estimation component estimates each review's salience
score. Next, a review clustering and ranking component ranks reviews in two
steps: first, reviews are grouped into clusters and ranked by cluster size;
then, reviews within each cluster are ranked by their distance to the cluster
center. Finally, given the ranked reviews, a rank-aware opinion tagging
component incorporates an alignment feature and alignment loss to generate a
ranked list of opinion tags. To facilitate the study of this task, we create
and release a large-scale dataset, called eComTag, crawled from real-world
e-commerce websites. Extensive experiments conducted on the eComTag dataset
verify the effectiveness of the proposed AOT-Net in terms of various evaluation
metrics.
- Abstract(参考訳): eコマースでは、意見タグは、アイテムのレビューの特徴を反映したEコマースプラットフォームが提供するタグのランクリストを指す。
消費者が商品に関する多くのレビューを素早く把握できるようにするために、電子商取引プラットフォームでは意見タグがますます適用されている。
意見タグを生成するための現在のメカニズムは、手動ラベリングまたはヒューリスティックな手法に依存している。
本稿では,ユーザが生成したレビューのセットに基づいて,意見タグのランク付けリストを自動的に生成しなければならない抽象的意見タグ付けタスクを提案する。
要約的な意見タグ付けタスクには,(1)レビューのうるさい性質,(2)レビューにおける意見タグの形式的性質,(3)レビューにおける口語使用法,(3)非常に類似した側面の異なる項目を区別する必要性,の3つの課題がある。
これらの課題に対処するために,aot-net という抽象的意見タグフレームワークを提案し,多数のレビューを与えられた意見タグのランク付けリストを生成する。
まず、文章レベルのサリエンス推定成分が各レビューのサリエンススコアを推定する。
次に、レビューのクラスタリングとランキングのコンポーネントがレビューを2つのステップでランク付けする。 まず、レビューはクラスタにグループ化され、クラスタのサイズでランク付けされる。
最後に、ランク付けされたレビューから、ランク付けされた意見タグ付けコンポーネントは、アライメント機能とアライメントロスを組み込んで、ランク付けされた意見タグのリストを生成する。
このタスクの研究を容易にするために、現実世界のeコマースウェブサイトからクロールされたeComTagと呼ばれる大規模なデータセットを作成し、リリースする。
eComTagデータセット上で行った大規模な実験は、様々な評価指標を用いて提案したAOT-Netの有効性を検証する。
関連論文リスト
- Integrating Rankings into Quantized Scores in Peer Review [61.27794774537103]
ピアレビューでは、レビュアーは通常、論文のスコアを提供するように求められます。
この問題を軽減するため、カンファレンスはレビュアーにレビューした論文のランキングを付加するように求め始めている。
このランキング情報を使用するための標準的な手順はなく、エリアチェアは異なる方法でそれを使用することができる。
我々は、ランキング情報をスコアに組み込むために、原則化されたアプローチを取る。
論文 参考訳(メタデータ) (2022-04-05T19:39:13Z) - Fine-Grained Opinion Summarization with Minimal Supervision [48.43506393052212]
FineSumは、複数のドキュメントから意見を抽出することでターゲットをプロファイルすることを目的としている。
FineSumは、生のコーパスから意見語句を自動的に識別し、異なる側面と感情に分類し、各アスペクト/感覚の下に複数のきめ細かい意見クラスタを構築する。
ベンチマークの自動評価と定量的人的評価の両方が,本手法の有効性を検証した。
論文 参考訳(メタデータ) (2021-10-17T15:16:34Z) - Expert Knowledge-Guided Length-Variant Hierarchical Label Generation for
Proposal Classification [21.190465278587045]
提案分類は、提案をラベルの長さ可変シーケンスに分類することを目的としている。
我々は3つの特徴を共同でモデル化する新しいディーププロポーザル分類フレームワークを開発した。
我々のモデルは,次のラベル予測を止めるために,ラベルシーケンスの最適な長さを自動的に識別することができる。
論文 参考訳(メタデータ) (2021-09-14T13:09:28Z) - Ranking Scientific Papers Using Preference Learning [48.78161994501516]
我々はこれをピアレビューテキストとレビュアースコアに基づく論文ランキング問題とみなした。
ピアレビューに基づいて最終決定を行うための,新しい多面的総合評価フレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-02T19:41:47Z) - SIFN: A Sentiment-aware Interactive Fusion Network for Review-based Item
Recommendation [48.1799451277808]
本稿では、レビューに基づく項目推薦のための感性認識型インタラクティブフュージョンネットワーク(SIFN)を提案する。
まず、BERTを介してユーザ/イテムレビューをエンコードし、各レビューのセマンティックな特徴を抽出する軽量な感情学習者を提案する。
そこで我々は,感情学習者が明示的な感情ラベルを用いて感情認識特徴を抽出するための感情予測タスクを提案する。
論文 参考訳(メタデータ) (2021-08-18T08:04:38Z) - Stay on Topic, Please: Aligning User Comments to the Content of a News
Article [7.3203631241415055]
新たな記事ベースに投稿されたユーザコメントとその内容との整合性を分類する分類アルゴリズムを提案する。
このアライメントは、コンテンツ、議論のエンティティ、トピック間の類似性に基づいて、ユーザーコメントと記事とを一致させようとする。
分類作業の難易度を理解するために,人間のラベル付け性能を評価するためのユーザ調査を行う。
論文 参考訳(メタデータ) (2021-03-03T18:29:00Z) - Unsupervised Summarization for Chat Logs with Topic-Oriented Ranking and
Context-Aware Auto-Encoders [59.038157066874255]
本稿では,手動ラベル付きデータを用いずにチャット要約を行うrankaeという新しいフレームワークを提案する。
RankAEは、中心性と多様性に応じてトピックの発話を同時に選択するトピック指向のランキング戦略で構成されています。
消音自動エンコーダは、選択された発話に基づいて簡潔でコンテキスト情報に基づいた要約を生成するように設計されています。
論文 参考訳(メタデータ) (2020-12-14T07:31:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。