論文の概要: Incremental Knowledge Based Question Answering
- arxiv url: http://arxiv.org/abs/2101.06938v1
- Date: Mon, 18 Jan 2021 09:03:38 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-27 05:59:56.927183
- Title: Incremental Knowledge Based Question Answering
- Title(参考訳): インクリメンタル知識に基づく質問応答
- Authors: Yongqi Li, Wenjie Li, Liqiang Nie
- Abstract要約: 人間と同じように学習能力を段階的に拡張できるインクリメンタルKBQA学習フレームワークを提案します。
具体的には、破滅的な忘れ問題を克服するために、マージン希釈損失と協調選択方法からなる。
包括的な実験は、進化する知識ベースに取り組む際にその効果と効率を示す。
- 参考スコア(独自算出の注目度): 52.041815783025186
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the past years, Knowledge-Based Question Answering (KBQA), which aims to
answer natural language questions using facts in a knowledge base, has been
well developed. Existing approaches often assume a static knowledge base.
However, the knowledge is evolving over time in the real world. If we directly
apply a fine-tuning strategy on an evolving knowledge base, it will suffer from
a serious catastrophic forgetting problem. In this paper, we propose a new
incremental KBQA learning framework that can progressively expand learning
capacity as humans do. Specifically, it comprises a margin-distilled loss and a
collaborative exemplar selection method, to overcome the catastrophic
forgetting problem by taking advantage of knowledge distillation. We reorganize
the SimpleQuestion dataset to evaluate the proposed incremental learning
solution to KBQA. The comprehensive experiments demonstrate its effectiveness
and efficiency when working with the evolving knowledge base.
- Abstract(参考訳): 近年,知識ベースの質問回答 (KBQA) は,知識ベースで事実を用いて自然言語の質問に答えることを目的としている。
既存のアプローチは静的な知識ベースを想定することが多い。
しかし、知識は現実世界で時間とともに進化している。
進化する知識ベースに微調整戦略を直接適用すれば、深刻な破滅的な忘れの問題に悩まされるでしょう。
本稿では,人間と同じように学習能力を段階的に拡大できる新しいインクリメンタルkbqa学習フレームワークを提案する。
具体的には、知識蒸留を生かして壊滅的な忘れる問題を克服するために、マージン蒸留損失と協調抽出方法とを含む。
提案するインクリメンタル学習ソリューションを評価するために,simplequestionデータセットを再編成した。
包括的な実験は、進化する知識ベースに取り組む際にその効果と効率を示す。
関連論文リスト
- Stable Knowledge Editing in Large Language Models [68.98582618305679]
本稿では,知識ローカライゼーションではなく,知識増強に基づく知識編集手法であるStableKEを紹介する。
人間のラベル付けのコストを克服するため、StableKEは2つの自動知識増強戦略を統合している。
StableKEは、他の知識編集方法を超え、編集された知識とマルチホップ知識の両方の安定性を示す。
論文 参考訳(メタデータ) (2024-02-20T14:36:23Z) - Online Continual Knowledge Learning for Language Models [3.654507524092343]
大規模言語モデル(LLM)は、幅広い世界の知識のリポジトリとして機能し、質問応答やファクトチェックなどのタスクを実行できる。
オンライン連続知識学習(OCKL)は,実時間制約下での世界知識の動的性質を管理することを目的としている。
論文 参考訳(メタデータ) (2023-11-16T07:31:03Z) - Self-Knowledge Guided Retrieval Augmentation for Large Language Models [59.771098292611846]
大規模言語モデル(LLM)はタスク固有の微調整なしで優れた性能を示す。
検索に基づく手法は、非パラメトリックな世界知識を提供し、質問応答のようなタスクのパフォーマンスを向上させることができる。
SKR(Self-Knowledge guided Retrieval augmentation)は、LLMがこれまで遭遇した質問を参照できるようにする、シンプルで効果的な方法である。
論文 参考訳(メタデータ) (2023-10-08T04:22:33Z) - A Unified End-to-End Retriever-Reader Framework for Knowledge-based VQA [67.75989848202343]
本稿では,知識に基づくVQAに向けて,エンド・ツー・エンドのレトリバー・リーダー・フレームワークを提案する。
我々は、視覚言語による事前学習モデルからの多モーダルな暗黙の知識に光を当て、知識推論の可能性を掘り下げた。
提案手法では,知識検索のガイダンスを提供するだけでなく,質問応答に対してエラーが発生しやすいケースも排除できる。
論文 参考訳(メタデータ) (2022-06-30T02:35:04Z) - A Two-Stage Approach towards Generalization in Knowledge Base Question
Answering [4.802205743713997]
知識ベース相互作用から意味解析を明確に分離する2段階アーキテクチャに基づくKBQAフレームワークを提案する。
我々のアプローチはLC-QuAD(DBpedia)、WebQSP(Freebase)、SimpleQuestions(Wikidata)、MetaQA(Wikimovies-KG)の同等ないし最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2021-11-10T17:45:33Z) - Coarse-to-Careful: Seeking Semantic-related Knowledge for Open-domain
Commonsense Question Answering [12.406729445165857]
背景コモンセンスを必要とする質問に機械が答えるのを助けるために、外部知識を利用するのが一般的である。
本稿では,知識注入を粗大から粗大に制御する意味駆動型知識認識型QAフレームワークを提案する。
論文 参考訳(メタデータ) (2021-07-04T10:56:36Z) - Contextualized Knowledge-aware Attentive Neural Network: Enhancing
Answer Selection with Knowledge [77.77684299758494]
ナレッジグラフ(KG)による外部知識による回答選択モデル向上のアプローチを幅広く検討しています。
まず、KGの外部知識とテキスト情報との密接な相互作用を考慮し、QA文表現を学習するコンテキスト知識相互作用学習フレームワークであるナレッジアウェアニューラルネットワーク(KNN)を紹介します。
KG情報の多様性と複雑性に対処するために, カスタマイズされたグラフ畳み込みネットワーク (GCN) を介して構造情報を用いた知識表現学習を改善し, コンテキストベースおよび知識ベースの文表現を総合的に学習する コンテキスト型知識認識型アテンシブニューラルネットワーク (CKANN) を提案する。
論文 参考訳(メタデータ) (2021-04-12T05:52:20Z) - KRISP: Integrating Implicit and Symbolic Knowledge for Open-Domain
Knowledge-Based VQA [107.7091094498848]
VQAの最も難しい質問の1つは、質問に答えるために画像に存在しない外部の知識を必要とする場合です。
本研究では,解答に必要な知識が与えられたり記入されたりしないオープンドメイン知識を,トレーニング時やテスト時にも検討する。
知識表現と推論には2つのタイプがあります。
まず、トランスベースのモデルで教師なし言語事前トレーニングと教師付きトレーニングデータから効果的に学ぶことができる暗黙的な知識。
論文 参考訳(メタデータ) (2020-12-20T20:13:02Z) - Question Answering over Knowledge Base using Language Model Embeddings [0.0]
本稿では,知識ベース質問回答タスクにおける事前学習言語モデルの利用に焦点を当てる。
さらに,これらの埋め込みを知識ベースから質問まで,双方向の注意機構で微調整した。
提案手法は,質問事項を表現するためのマルチヘッドアテンション機構を備えた,単純な畳み込みニューラルネットワークアーキテクチャに基づいている。
論文 参考訳(メタデータ) (2020-10-17T22:59:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。