論文の概要: Feature Fusion of Raman Chemical Imaging and Digital Histopathology
using Machine Learning for Prostate Cancer Detection
- arxiv url: http://arxiv.org/abs/2101.07342v1
- Date: Mon, 18 Jan 2021 22:11:42 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-27 05:44:45.080835
- Title: Feature Fusion of Raman Chemical Imaging and Digital Histopathology
using Machine Learning for Prostate Cancer Detection
- Title(参考訳): 前立腺癌検出のための機械学習を用いたラマンケミカルイメージングとデジタル組織像の融合
- Authors: Trevor Doherty, Susan McKeever, Nebras Al-Attar, Tiarnan Murphy,
Claudia Aura, Arman Rahman, Amanda O'Neill, Stephen P Finn, Elaine Kay,
William M. Gallagher, R. William G. Watson, Aoife Gowen and Patrick Jackman
- Abstract要約: 本研究は, 染色デジタル組織学 (DP) と非定常ラマンケミカルイメージング (RCI) によるマルチモーダル画像を用いた。
この仮説は、マルチモーダル画像モデルが診断精度の点で単一のモダリティベースラインモデルより優れているかどうかを検証した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The diagnosis of prostate cancer is challenging due to the heterogeneity of
its presentations, leading to the over diagnosis and treatment of
non-clinically important disease. Accurate diagnosis can directly benefit a
patient's quality of life and prognosis. Towards addressing this issue, we
present a learning model for the automatic identification of prostate cancer.
While many prostate cancer studies have adopted Raman spectroscopy approaches,
none have utilised the combination of Raman Chemical Imaging (RCI) and other
imaging modalities. This study uses multimodal images formed from stained
Digital Histopathology (DP) and unstained RCI. The approach was developed and
tested on a set of 178 clinical samples from 32 patients, containing a range of
non-cancerous, Gleason grade 3 (G3) and grade 4 (G4) tissue microarray samples.
For each histological sample, there is a pathologist labelled DP - RCI image
pair. The hypothesis tested was whether multimodal image models can outperform
single modality baseline models in terms of diagnostic accuracy. Binary
non-cancer/cancer models and the more challenging G3/G4 differentiation were
investigated. Regarding G3/G4 classification, the multimodal approach achieved
a sensitivity of 73.8% and specificity of 88.1% while the baseline DP model
showed a sensitivity and specificity of 54.1% and 84.7% respectively. The
multimodal approach demonstrated a statistically significant 12.7% AUC
advantage over the baseline with a value of 85.8% compared to 73.1%, also
outperforming models based solely on RCI and median Raman spectra. Feature
fusion of DP and RCI does not improve the more trivial task of tumour
identification but does deliver an observed advantage in G3/G4 discrimination.
Building on these promising findings, future work could include the acquisition
of larger datasets for enhanced model generalization.
- Abstract(参考訳): 前立腺癌の診断はプレゼンテーションの多様性のため困難であり,非臨床的に重要な疾患の診断と治療が過度に行われている。
正確な診断は患者の生活の質や予後に直接利益をもたらす。
この問題に対処するために,前立腺癌の自動診断のための学習モデルを提案する。
多くの前立腺がん研究ではラマン分光法が採用されているが、ラマン化学イメージング(Raman Chemical Imaging, RCI)と他の画像モダリティの組み合わせは利用されていない。
本研究は, 染色デジタル組織学(DP)と非定常RCIを併用したマルチモーダル画像を用いた。
本手法は,非癌性Gleason grade 3 (G3) およびグレード4 (G4) 組織マイクロアレイ標本を含む32例の臨床試料178例を用いて開発・試験した。
病理組織学的にはDP-RCI画像対とラベルが付けられている。
検証された仮説は、診断精度の観点から、マルチモーダル画像モデルが単一モダリティベースラインモデルより優れているかどうかである。
2種類の非癌/がんモデルとより困難なG3/G4の分化について検討した。
g3/g4分類では,マルチモーダルアプローチは73.8%,特異度88.1%,ベースラインdpモデルは54.1%,特異度84.7%であった。
マルチモーダルアプローチは、統計学的に有意な12.7%のAUCの優位性を、RCIと中央ラマンスペクトルのみに基づくモデルよりも85.8%の値で証明した。
DPとRCIの特徴融合は、腫瘍識別のより簡単な作業を改善するものではなく、G3/G4識別において観察された優位性をもたらす。
これらの有望な結果に基づいて、将来の研究には、拡張モデル一般化のためのより大きなデータセットの取得が含まれる。
関連論文リスト
- Towards Non-invasive and Personalized Management of Breast Cancer Patients from Multiparametric MRI via A Large Mixture-of-Modality-Experts Model [19.252851972152957]
本稿では,マルチパラメトリックMRI情報を統一構造内に組み込んだMOMEについて報告する。
MOMEは乳癌の正確かつ堅牢な同定を証明した。
BI-RADS 4患者の生検の必要性を7.3%減らし、AUROC0.709で3重陰性乳癌を分類し、AUROC0.694でネオアジュバント化学療法に対する病理学的完全反応を予測することができる。
論文 参考訳(メタデータ) (2024-08-08T05:04:13Z) - Optimizing Synthetic Correlated Diffusion Imaging for Breast Cancer Tumour Delineation [71.91773485443125]
CDI$s$ - 最適化されたモダリティにより最高のAUCが達成され、金標準のモダリティが0.0044より優れていることを示す。
特に、最適化されたCDI$s$モダリティは、最適化されていないCDI$s$値よりも0.02以上のAUC値を達成する。
論文 参考訳(メタデータ) (2024-05-13T16:07:58Z) - Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
乳がん治療計画において、グレーディングは重要な役割を担っている。
現在の腫瘍グレード法では、患者から組織を抽出し、ストレス、不快感、医療費の上昇につながる。
本稿では,CDI$s$の最適化による乳癌の診断精度の向上について検討する。
論文 参考訳(メタデータ) (2024-05-13T15:48:26Z) - Applications of artificial intelligence in the analysis of histopathology images of gliomas: a review [0.33999813472511115]
本稿では,ヒトグリオーマの全スライディング組織像に対するAIベースの手法を提案する83の公開研究について検討する。
現在の研究の焦点は、成人型びまん性グリオーマのヘマトキシリンおよびエオシン染色組織分画の評価である。
これまでのところ、AIベースの手法は有望な成果を上げているが、実際の臨床環境ではまだ使われていない。
論文 参考訳(メタデータ) (2024-01-26T17:29:01Z) - Diagnosing Bipolar Disorder from 3-D Structural Magnetic Resonance
Images Using a Hybrid GAN-CNN Method [0.0]
本研究では、3次元構造MRI画像(sMRI)から双極性障害(BD)を診断するためのハイブリッドGAN-CNNモデルを提案する。
その結果, 精度が75.8%, 感度が60.3%, 特異性が82.5%となり, 従来よりも3.5%高いことがわかった。
論文 参考訳(メタデータ) (2023-10-11T10:17:41Z) - Developing a Novel Image Marker to Predict the Clinical Outcome of Neoadjuvant Chemotherapy (NACT) for Ovarian Cancer Patients [1.7623658472574557]
ネオアジュバント化学療法(ネオアジュバントセラピー、Neoadjuvant chemotherapy, NACT)は、卵巣がんの進行期における治療法の一つ。
NACTに対する部分的反応は、近位部破裂手術を引き起こす可能性があり、予後不良を引き起こす。
我々は,NATの早期に高精度な予後予測を実現するために,新しい画像マーカーを開発した。
論文 参考訳(メタデータ) (2023-09-13T16:59:50Z) - Towards More Transparent and Accurate Cancer Diagnosis with an
Unsupervised CAE Approach [1.6704594205447996]
CBMIR(Content-Based Medical Image Retrieval)を利用したデジタル病理診断
UCBMIRは従来のがん診断ワークフローを再現し、WSIベースの診断結論における病理医を支援するための信頼性の高い方法を提供する。
論文 参考訳(メタデータ) (2023-05-19T15:04:16Z) - CancerUniT: Towards a Single Unified Model for Effective Detection,
Segmentation, and Diagnosis of Eight Major Cancers Using a Large Collection
of CT Scans [45.83431075462771]
ヒトの読者や放射線医は、臨床実践において、全身多臓器多臓器の検出と診断を日常的に行う。
ほとんどの医療用AIシステムは、いくつかの疾患のリストの狭い単一の臓器に焦点を当てて構築されている。
CancerUniT は、マルチ腫瘍予測の出力を持つクエリベースの Mask Transformer モデルである。
論文 参考訳(メタデータ) (2023-01-28T20:09:34Z) - WSSS4LUAD: Grand Challenge on Weakly-supervised Tissue Semantic
Segmentation for Lung Adenocarcinoma [51.50991881342181]
この課題には10,091個のパッチレベルのアノテーションと1300万以上のラベル付きピクセルが含まれる。
第一位チームは0.8413mIoUを達成した(腫瘍:0.8389、ストーマ:0.7931、正常:0.8919)。
論文 参考訳(メタデータ) (2022-04-13T15:27:05Z) - Multi-Scale Hybrid Vision Transformer for Learning Gastric Histology:
AI-Based Decision Support System for Gastric Cancer Treatment [50.89811515036067]
胃内視鏡検査は、早期に適切な胃癌(GC)治療を判定し、GC関連死亡率を低下させる有効な方法である。
本稿では,一般のGC治療指導と直接一致する5つのGC病理のサブ分類を可能にする実用的なAIシステムを提案する。
論文 参考訳(メタデータ) (2022-02-17T08:33:52Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
乳腺腫瘍の分類と分別を同時に行うための,効率的で軽量な学習アーキテクチャを提案する。
腫瘍分類ネットワークにセグメンテーションタスクを組み込むことにより,腫瘍領域に着目したバックボーンネットワークで表現を学習する。
腫瘍分類の精度、感度、特異性はそれぞれ88.6%、94.1%、85.3%である。
論文 参考訳(メタデータ) (2022-01-13T05:24:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。