論文の概要: Collaborative Federated Learning For Healthcare: Multi-Modal COVID-19
Diagnosis at the Edge
- arxiv url: http://arxiv.org/abs/2101.07511v1
- Date: Tue, 19 Jan 2021 08:40:59 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-23 05:17:41.618126
- Title: Collaborative Federated Learning For Healthcare: Multi-Modal COVID-19
Diagnosis at the Edge
- Title(参考訳): 医療のための協調的フェデレーションラーニング:端部におけるマルチモーダルなCOVID-19診断
- Authors: Adnan Qayyum, Kashif Ahmad, Muhammad Ahtazaz Ahsan, Ala Al-Fuqaha, and
Junaid Qadir
- Abstract要約: 我々は,医療におけるエッジコンピューティングの能力を活用し,臨床ビジュアルデータのインテリジェントな処理の可能性を分析し,評価する。
本研究では,CFL(Clustered federated Learning)の概念を,新型コロナの自動診断に応用した。
2つのベンチマークデータセットの異なる実験セットアップの下で,提案フレームワークの性能を評価する。
- 参考スコア(独自算出の注目度): 5.258947981618588
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite significant improvements over the last few years, cloud-based
healthcare applications continue to suffer from poor adoption due to their
limitations in meeting stringent security, privacy, and quality of service
requirements (such as low latency). The edge computing trend, along with
techniques for distributed machine learning such as federated learning, have
gained popularity as a viable solution in such settings. In this paper, we
leverage the capabilities of edge computing in medicine by analyzing and
evaluating the potential of intelligent processing of clinical visual data at
the edge allowing the remote healthcare centers, lacking advanced diagnostic
facilities, to benefit from the multi-modal data securely. To this aim, we
utilize the emerging concept of clustered federated learning (CFL) for an
automatic diagnosis of COVID-19. Such an automated system can help reduce the
burden on healthcare systems across the world that has been under a lot of
stress since the COVID-19 pandemic emerged in late 2019. We evaluate the
performance of the proposed framework under different experimental setups on
two benchmark datasets. Promising results are obtained on both datasets
resulting in comparable results against the central baseline where the
specialized models (i.e., each on a specific type of COVID-19 imagery) are
trained with central data, and improvements of 16\% and 11\% in overall
F1-Scores have been achieved over the multi-modal model trained in the
conventional Federated Learning setup on X-ray and Ultrasound datasets,
respectively. We also discuss in detail the associated challenges,
technologies, tools, and techniques available for deploying ML at the edge in
such privacy and delay-sensitive applications.
- Abstract(参考訳): ここ数年で大幅に改善されたにもかかわらず、クラウドベースのヘルスケアアプリケーションは、厳格なセキュリティ、プライバシ、サービス要件の品質(低レイテンシなど)を満たすことの制限により、採用が遅れている。
エッジコンピューティングのトレンドは、フェデレーション学習のような分散機械学習のテクニックとともに、このような環境で実行可能なソリューションとして人気を集めています。
本稿では,先進的な診断施設を欠いた遠隔医療センターにおいて,臨床視覚データのインテリジェントな処理の可能性を分析し,評価することにより,医療におけるエッジコンピューティングの能力を活用し,マルチモーダルデータの安全性を享受する。
そこで本研究では,クラスタ化フェデレーション学習(CFL)の概念を,新型コロナウイルスの自動診断に活用する。
このような自動化システムは、新型コロナウイルス(covid-19)のパンデミックが2019年後半に発生して以来、多くのストレスにさらされてきた世界中の医療システムの負担を軽減するのに役立つ。
2つのベンチマークデータセットの異なる実験環境において,提案フレームワークの性能を評価する。
その結果、それぞれのデータセットにおいて、特定のモデル(例えば、特定の種類のCOVID-19画像上の各モデル)を中心データでトレーニングする中央ベースラインに対して比較結果が得られ、X線および超音波データセット上の従来のフェデレートラーニング設定でトレーニングされたマルチモーダルモデルに対して、全体的なF1スコアの16.%と11.%の改善が達成された。
また,このようなプライバシや遅延に敏感なアプリケーションにおいて,mlをエッジにデプロイするための,関連する課題や技術,ツール,テクニックについても詳細に論じる。
関連論文リスト
- Unsupervised Training of Neural Cellular Automata on Edge Devices [2.5462695047893025]
携帯電話上でのセルラーオートマタトレーニングを, アクセス可能なX線肺セグメンテーションのために直接実施する。
5つのAndroidデバイスにこれらの高度なモデルをデプロイし、トレーニングする実用性と実現可能性を確認します。
デジタルコピーが入手できず、X線ライトボックスやモニターから画像を撮影しなければならない極端な場合、VWSLはDiceの精度を5-20%向上させる。
論文 参考訳(メタデータ) (2024-07-25T15:21:54Z) - OCT-SelfNet: A Self-Supervised Framework with Multi-Modal Datasets for
Generalized and Robust Retinal Disease Detection [2.3349787245442966]
本研究は、眼疾患を検出するための自己教師付き堅牢な機械学習フレームワークであるOCT-SelfNetに貢献する。
本手法は,自己指導型事前学習と教師型微調整を組み合わせた2段階学習手法を用いてこの問題に対処する。
AUC-PR測定では,提案手法は42%を超え,ベースラインに比べて10%以上の性能向上を示した。
論文 参考訳(メタデータ) (2024-01-22T20:17:14Z) - Dissecting Self-Supervised Learning Methods for Surgical Computer Vision [51.370873913181605]
一般のコンピュータビジョンコミュニティでは,自己監視学習(SSL)手法が普及し始めている。
医学や手術など、より複雑で影響力のある領域におけるSSLメソッドの有効性は、限定的かつ未調査のままである。
外科的文脈理解,位相認識,ツール存在検出の2つの基本的なタスクに対して,これらの手法の性能をColec80データセット上で広範囲に解析する。
論文 参考訳(メタデータ) (2022-07-01T14:17:11Z) - Robust and Efficient Medical Imaging with Self-Supervision [80.62711706785834]
医用画像AIの堅牢性とデータ効率を向上させるための統一表現学習戦略であるREMEDISを提案する。
様々な医療画像タスクを研究し, 振り返りデータを用いて3つの現実的な応用シナリオをシミュレートする。
論文 参考訳(メタデータ) (2022-05-19T17:34:18Z) - When Accuracy Meets Privacy: Two-Stage Federated Transfer Learning
Framework in Classification of Medical Images on Limited Data: A COVID-19
Case Study [77.34726150561087]
新型コロナウイルスのパンデミックが急速に広がり、世界の医療資源が不足している。
CNNは医療画像の解析に広く利用され、検証されている。
論文 参考訳(メタデータ) (2022-03-24T02:09:41Z) - Advancing COVID-19 Diagnosis with Privacy-Preserving Collaboration in
Artificial Intelligence [79.038671794961]
我々はUCADI(Unified CT-COVID AI Diagnostic Initiative)を立ち上げ、各ホスト機関でAIモデルを分散的にトレーニングし、独立して実行することができる。
本研究は,中国とイギリスに所在する23の病院で採取した3,336例の胸部CT9,573例について検討した。
論文 参考訳(メタデータ) (2021-11-18T00:43:41Z) - FLOP: Federated Learning on Medical Datasets using Partial Networks [84.54663831520853]
新型コロナウイルスの感染拡大で医療資源が不足している。
新型コロナウイルスの診断を緩和するために、さまざまなデータ駆動型ディープラーニングモデルが開発されている。
患者のプライバシー上の懸念から、データそのものはまだ乏しい。
我々は、textbfPartial Networks (FLOP) を用いた、シンプルで効果的な textbfFederated textbfL textbfon Medical データセットを提案する。
論文 参考訳(メタデータ) (2021-02-10T01:56:58Z) - Federated Semi-Supervised Learning for COVID Region Segmentation in
Chest CT using Multi-National Data from China, Italy, Japan [14.776338073000526]
新型コロナウイルスはSARS-CoV-2感染の診断と管理に緊急に必要なものとなっている。
近年の取り組みはコンピュータによる特徴付けと診断に重点を置いている。
臨床データセンター間のデータのドメインシフトは、学習ベースのモデルをデプロイする際に深刻な課題となる。
論文 参考訳(メタデータ) (2020-11-23T21:51:26Z) - Contrastive Cross-site Learning with Redesigned Net for COVID-19 CT
Classification [20.66003113364796]
新型コロナウイルス感染症(COVID-19)のパンデミックにより、世界の公衆衛生危機が数百カ国で拡大している。
画像解釈の面倒な作業量を削減するとともに、臨床診断を支援するために、CT画像を用いたCOVID-19識別自動化ツールの開発が望まれている。
本稿では、異種データセットを効果的に学習することで、正確な新型コロナウイルス識別を行うための新しい共同学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-09-15T11:09:04Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
挑戦的なシナリオで堅牢なモデリングを可能にするディープラーニングフレームワークを提案する。
その結果,85%のラベル付きデータを用いて,大規模データ設定で学習した分類器の性能に適合する予測モデルを構築することができた。
論文 参考訳(メタデータ) (2020-05-03T02:36:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。