Collaborative Federated Learning For Healthcare: Multi-Modal COVID-19
Diagnosis at the Edge
- URL: http://arxiv.org/abs/2101.07511v1
- Date: Tue, 19 Jan 2021 08:40:59 GMT
- Title: Collaborative Federated Learning For Healthcare: Multi-Modal COVID-19
Diagnosis at the Edge
- Authors: Adnan Qayyum, Kashif Ahmad, Muhammad Ahtazaz Ahsan, Ala Al-Fuqaha, and
Junaid Qadir
- Abstract summary: We leverage the capabilities of edge computing in medicine by analyzing and evaluating the potential of intelligent processing of clinical visual data at the edge.
To this aim, we utilize the emerging concept of clustered federated learning (CFL) for an automatic diagnosis of COVID-19.
We evaluate the performance of the proposed framework under different experimental setups on two benchmark datasets.
- Score: 5.258947981618588
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite significant improvements over the last few years, cloud-based
healthcare applications continue to suffer from poor adoption due to their
limitations in meeting stringent security, privacy, and quality of service
requirements (such as low latency). The edge computing trend, along with
techniques for distributed machine learning such as federated learning, have
gained popularity as a viable solution in such settings. In this paper, we
leverage the capabilities of edge computing in medicine by analyzing and
evaluating the potential of intelligent processing of clinical visual data at
the edge allowing the remote healthcare centers, lacking advanced diagnostic
facilities, to benefit from the multi-modal data securely. To this aim, we
utilize the emerging concept of clustered federated learning (CFL) for an
automatic diagnosis of COVID-19. Such an automated system can help reduce the
burden on healthcare systems across the world that has been under a lot of
stress since the COVID-19 pandemic emerged in late 2019. We evaluate the
performance of the proposed framework under different experimental setups on
two benchmark datasets. Promising results are obtained on both datasets
resulting in comparable results against the central baseline where the
specialized models (i.e., each on a specific type of COVID-19 imagery) are
trained with central data, and improvements of 16\% and 11\% in overall
F1-Scores have been achieved over the multi-modal model trained in the
conventional Federated Learning setup on X-ray and Ultrasound datasets,
respectively. We also discuss in detail the associated challenges,
technologies, tools, and techniques available for deploying ML at the edge in
such privacy and delay-sensitive applications.
Related papers
- Unsupervised Training of Neural Cellular Automata on Edge Devices [2.5462695047893025]
We implement Cellular Automata training directly on smartphones for accessible X-ray lung segmentation.
We confirm the practicality and feasibility of deploying and training these advanced models on five Android devices.
In extreme cases where no digital copy is available and images must be captured by a phone from an X-ray lightbox or monitor, VWSL enhances Dice accuracy by 5-20%.
arXiv Detail & Related papers (2024-07-25T15:21:54Z) - OCT-SelfNet: A Self-Supervised Framework with Multi-Modal Datasets for
Generalized and Robust Retinal Disease Detection [2.3349787245442966]
Our research contributes a self-supervised robust machine learning framework, OCT-SelfNet, for detecting eye diseases.
Our method addresses the issue using a two-phase training approach that combines self-supervised pretraining and supervised fine-tuning.
In terms of the AUC-PR metric, our proposed method exceeded 42%, showcasing a substantial increase of at least 10% in performance compared to the baseline.
arXiv Detail & Related papers (2024-01-22T20:17:14Z) - Dissecting Self-Supervised Learning Methods for Surgical Computer Vision [51.370873913181605]
Self-Supervised Learning (SSL) methods have begun to gain traction in the general computer vision community.
The effectiveness of SSL methods in more complex and impactful domains, such as medicine and surgery, remains limited and unexplored.
We present an extensive analysis of the performance of these methods on the Cholec80 dataset for two fundamental and popular tasks in surgical context understanding, phase recognition and tool presence detection.
arXiv Detail & Related papers (2022-07-01T14:17:11Z) - Robust and Efficient Medical Imaging with Self-Supervision [80.62711706785834]
We present REMEDIS, a unified representation learning strategy to improve robustness and data-efficiency of medical imaging AI.
We study a diverse range of medical imaging tasks and simulate three realistic application scenarios using retrospective data.
arXiv Detail & Related papers (2022-05-19T17:34:18Z) - When Accuracy Meets Privacy: Two-Stage Federated Transfer Learning
Framework in Classification of Medical Images on Limited Data: A COVID-19
Case Study [77.34726150561087]
COVID-19 pandemic has spread rapidly and caused a shortage of global medical resources.
CNN has been widely utilized and verified in analyzing medical images.
arXiv Detail & Related papers (2022-03-24T02:09:41Z) - Advancing COVID-19 Diagnosis with Privacy-Preserving Collaboration in
Artificial Intelligence [79.038671794961]
We launch the Unified CT-COVID AI Diagnostic Initiative (UCADI), where the AI model can be distributedly trained and independently executed at each host institution.
Our study is based on 9,573 chest computed tomography scans (CTs) from 3,336 patients collected from 23 hospitals located in China and the UK.
arXiv Detail & Related papers (2021-11-18T00:43:41Z) - FLOP: Federated Learning on Medical Datasets using Partial Networks [84.54663831520853]
COVID-19 Disease due to the novel coronavirus has caused a shortage of medical resources.
Different data-driven deep learning models have been developed to mitigate the diagnosis of COVID-19.
The data itself is still scarce due to patient privacy concerns.
We propose a simple yet effective algorithm, named textbfFederated textbfL textbfon Medical datasets using textbfPartial Networks (FLOP)
arXiv Detail & Related papers (2021-02-10T01:56:58Z) - Federated Semi-Supervised Learning for COVID Region Segmentation in
Chest CT using Multi-National Data from China, Italy, Japan [14.776338073000526]
COVID-19 has led to urgent needs for reliable diagnosis and management of SARS-CoV-2 infection.
Recent efforts have focused on computer-aided characterization and diagnosis.
domain shift of data across clinical data centers poses a serious challenge when deploying learning-based models.
arXiv Detail & Related papers (2020-11-23T21:51:26Z) - Contrastive Cross-site Learning with Redesigned Net for COVID-19 CT
Classification [20.66003113364796]
The pandemic of coronavirus disease 2019 (COVID-19) has lead to a global public health crisis spreading hundreds of countries.
To assist the clinical diagnosis and reduce the tedious workload of image interpretation, developing automated tools for COVID-19 identification with CT image is highly desired.
This paper proposes a novel joint learning framework to perform accurate COVID-19 identification by effectively learning with heterogeneous datasets.
arXiv Detail & Related papers (2020-09-15T11:09:04Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
We present a deep learning framework that enables robust modeling in challenging scenarios.
Our results show that using 85% lesser labeled data, we can build predictive models that match the performance of classifiers trained in a large-scale data setting.
arXiv Detail & Related papers (2020-05-03T02:36:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.