Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification
- URL: http://arxiv.org/abs/2005.02231v2
- Date: Wed, 10 Feb 2021 18:46:26 GMT
- Title: Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification
- Authors: Deepta Rajan, Jayaraman J. Thiagarajan, Alexandros Karargyris,
Satyananda Kashyap
- Abstract summary: We present a deep learning framework that enables robust modeling in challenging scenarios.
Our results show that using 85% lesser labeled data, we can build predictive models that match the performance of classifiers trained in a large-scale data setting.
- Score: 80.00316465793702
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automated diagnostic assistants in healthcare necessitate accurate AI models
that can be trained with limited labeled data, can cope with severe class
imbalances and can support simultaneous prediction of multiple disease
conditions. To this end, we present a deep learning framework that utilizes a
number of key components to enable robust modeling in such challenging
scenarios. Using an important use-case in chest X-ray classification, we
provide several key insights on the effective use of data augmentation,
self-training via distillation and confidence tempering for small data learning
in medical imaging. Our results show that using 85% lesser labeled data, we can
build predictive models that match the performance of classifiers trained in a
large-scale data setting.
Related papers
- An Efficient Contrastive Unimodal Pretraining Method for EHR Time Series Data [35.943089444017666]
We propose an efficient method of contrastive pretraining tailored for long clinical timeseries data.
Our model demonstrates the ability to impute missing measurements, providing clinicians with deeper insights into patient conditions.
arXiv Detail & Related papers (2024-10-11T19:05:25Z) - How Can We Tame the Long-Tail of Chest X-ray Datasets? [0.0]
Chest X-rays (CXRs) are a medical imaging modality that is used to infer a large number of abnormalities.
Few of them are quite commonly observed and are abundantly represented in CXR datasets.
It is challenging for current models to learn independent discriminatory features for labels that are rare but may be of high significance.
arXiv Detail & Related papers (2023-09-08T12:28:40Z) - Vision-Language Modelling For Radiological Imaging and Reports In The
Low Data Regime [70.04389979779195]
This paper explores training medical vision-language models (VLMs) where the visual and language inputs are embedded into a common space.
We explore several candidate methods to improve low-data performance, including adapting generic pre-trained models to novel image and text domains.
Using text-to-image retrieval as a benchmark, we evaluate the performance of these methods with variable sized training datasets of paired chest X-rays and radiological reports.
arXiv Detail & Related papers (2023-03-30T18:20:00Z) - RadTex: Learning Efficient Radiograph Representations from Text Reports [7.090896766922791]
We build a data-efficient learning framework that utilizes radiology reports to improve medical image classification performance with limited labeled data.
Our model achieves higher classification performance than ImageNet-supervised pretraining when labeled training data is limited.
arXiv Detail & Related papers (2022-08-05T15:06:26Z) - Self-Supervised Learning as a Means To Reduce the Need for Labeled Data
in Medical Image Analysis [64.4093648042484]
We use a dataset of chest X-ray images with bounding box labels for 13 different classes of anomalies.
We show that it is possible to achieve similar performance to a fully supervised model in terms of mean average precision and accuracy with only 60% of the labeled data.
arXiv Detail & Related papers (2022-06-01T09:20:30Z) - AI can evolve without labels: self-evolving vision transformer for chest
X-ray diagnosis through knowledge distillation [30.075714642990768]
We present a novel deep learning framework that uses knowledge distillation through self-supervised learning and self-training.
Experimental results show that the proposed framework maintains impressive robustness against a real-world environment.
The proposed framework has a great potential for medical imaging, where plenty of data is accumulated every year.
arXiv Detail & Related papers (2022-02-13T22:40:46Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - Deep Mining External Imperfect Data for Chest X-ray Disease Screening [57.40329813850719]
We argue that incorporating an external CXR dataset leads to imperfect training data, which raises the challenges.
We formulate the multi-label disease classification problem as weighted independent binary tasks according to the categories.
Our framework simultaneously models and tackles the domain and label discrepancies, enabling superior knowledge mining ability.
arXiv Detail & Related papers (2020-06-06T06:48:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.