Meta-Reinforcement Learning for Adaptive Motor Control in Changing Robot
Dynamics and Environments
- URL: http://arxiv.org/abs/2101.07599v1
- Date: Tue, 19 Jan 2021 12:57:12 GMT
- Title: Meta-Reinforcement Learning for Adaptive Motor Control in Changing Robot
Dynamics and Environments
- Authors: Timoth\'ee Anne, Jack Wilkinson, Zhibin Li
- Abstract summary: This work developed a meta-learning approach that adapts the control policy on the fly to different changing conditions for robust locomotion.
The proposed method constantly updates the interaction model, samples feasible sequences of actions of estimated the state-action trajectories, and then applies the optimal actions to maximize the reward.
- Score: 3.5309638744466167
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work developed a meta-learning approach that adapts the control policy
on the fly to different changing conditions for robust locomotion. The proposed
method constantly updates the interaction model, samples feasible sequences of
actions of estimated the state-action trajectories, and then applies the
optimal actions to maximize the reward. To achieve online model adaptation, our
proposed method learns different latent vectors of each training condition,
which are selected online given the newly collected data. Our work designs
appropriate state space and reward functions, and optimizes feasible actions in
an MPC fashion which are then sampled directly in the joint space considering
constraints, hence requiring no prior design of specific walking gaits. We
further demonstrate the robot's capability of detecting unexpected changes
during interaction and adapting control policies quickly. The extensive
validation on the SpotMicro robot in a physics simulation shows adaptive and
robust locomotion skills under varying ground friction, external pushes, and
different robot models including hardware faults and changes.
Related papers
- Guided Decoding for Robot On-line Motion Generation and Adaption [44.959409835754634]
We present a novel motion generation approach for robot arms, with high degrees of freedom, in complex settings that can adapt online to obstacles or new via points.
We train a transformer architecture, based on conditional variational autoencoder, on a large dataset of simulated trajectories used as demonstrations.
We show that our model successfully generates motion from different initial and target points and that is capable of generating trajectories that navigate complex tasks across different robotic platforms.
arXiv Detail & Related papers (2024-03-22T14:32:27Z) - Adapt On-the-Go: Behavior Modulation for Single-Life Robot Deployment [92.48012013825988]
We study the problem of adapting on-the-fly to novel scenarios during deployment.
Our approach, RObust Autonomous Modulation (ROAM), introduces a mechanism based on the perceived value of pre-trained behaviors.
We demonstrate that ROAM enables a robot to adapt rapidly to changes in dynamics both in simulation and on a real Go1 quadruped.
arXiv Detail & Related papers (2023-11-02T08:22:28Z) - Context-Conditional Navigation with a Learning-Based Terrain- and Robot-Aware Dynamics Model [11.800678688260081]
We develop a novel probabilistic, terrain- and robot-aware forward dynamics model, termed TRADYN.
We evaluate our method in a simulated 2D navigation setting with a unicycle-like robot and different terrain layouts with spatially varying friction coefficients.
arXiv Detail & Related papers (2023-07-18T12:42:59Z) - Meta Reinforcement Learning for Optimal Design of Legged Robots [9.054187238463212]
We present a design optimization framework using model-free meta reinforcement learning.
We show that our approach allows higher performance while not being constrained by predefined motions or gait patterns.
arXiv Detail & Related papers (2022-10-06T08:37:52Z) - Learning Policies for Continuous Control via Transition Models [2.831332389089239]
In robot control, moving an arm's end-effector to a target position or along a target trajectory requires accurate forward and inverse models.
We show that by learning the transition (forward) model from interaction, we can use it to drive the learning of an amortized policy.
arXiv Detail & Related papers (2022-09-16T16:23:48Z) - Nonprehensile Riemannian Motion Predictive Control [57.295751294224765]
We introduce a novel Real-to-Sim reward analysis technique to reliably imagine and predict the outcome of taking possible actions for a real robotic platform.
We produce a closed-loop controller to reactively push objects in a continuous action space.
We observe that RMPC is robust in cluttered as well as occluded environments and outperforms the baselines.
arXiv Detail & Related papers (2021-11-15T18:50:04Z) - An Adaptable Approach to Learn Realistic Legged Locomotion without
Examples [38.81854337592694]
This work proposes a generic approach for ensuring realism in locomotion by guiding the learning process with the spring-loaded inverted pendulum model as a reference.
We present experimental results showing that even in a model-free setup, the learned policies can generate realistic and energy-efficient locomotion gaits for a bipedal and a quadrupedal robot.
arXiv Detail & Related papers (2021-10-28T10:14:47Z) - OSCAR: Data-Driven Operational Space Control for Adaptive and Robust
Robot Manipulation [50.59541802645156]
Operational Space Control (OSC) has been used as an effective task-space controller for manipulation.
We propose OSC for Adaptation and Robustness (OSCAR), a data-driven variant of OSC that compensates for modeling errors.
We evaluate our method on a variety of simulated manipulation problems, and find substantial improvements over an array of controller baselines.
arXiv Detail & Related papers (2021-10-02T01:21:38Z) - Reinforcement Learning for Robust Parameterized Locomotion Control of
Bipedal Robots [121.42930679076574]
We present a model-free reinforcement learning framework for training robust locomotion policies in simulation.
domain randomization is used to encourage the policies to learn behaviors that are robust across variations in system dynamics.
We demonstrate this on versatile walking behaviors such as tracking a target walking velocity, walking height, and turning yaw.
arXiv Detail & Related papers (2021-03-26T07:14:01Z) - Bayesian Meta-Learning for Few-Shot Policy Adaptation Across Robotic
Platforms [60.59764170868101]
Reinforcement learning methods can achieve significant performance but require a large amount of training data collected on the same robotic platform.
We formulate it as a few-shot meta-learning problem where the goal is to find a model that captures the common structure shared across different robotic platforms.
We experimentally evaluate our framework on a simulated reaching and a real-robot picking task using 400 simulated robots.
arXiv Detail & Related papers (2021-03-05T14:16:20Z) - Rapidly Adaptable Legged Robots via Evolutionary Meta-Learning [65.88200578485316]
We present a new meta-learning method that allows robots to quickly adapt to changes in dynamics.
Our method significantly improves adaptation to changes in dynamics in high noise settings.
We validate our approach on a quadruped robot that learns to walk while subject to changes in dynamics.
arXiv Detail & Related papers (2020-03-02T22:56:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.