Nonprehensile Riemannian Motion Predictive Control
- URL: http://arxiv.org/abs/2111.07986v1
- Date: Mon, 15 Nov 2021 18:50:04 GMT
- Title: Nonprehensile Riemannian Motion Predictive Control
- Authors: Hamid Izadinia, Byron Boots, Steven M. Seitz
- Abstract summary: We introduce a novel Real-to-Sim reward analysis technique to reliably imagine and predict the outcome of taking possible actions for a real robotic platform.
We produce a closed-loop controller to reactively push objects in a continuous action space.
We observe that RMPC is robust in cluttered as well as occluded environments and outperforms the baselines.
- Score: 57.295751294224765
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Nonprehensile manipulation involves long horizon underactuated object
interactions and physical contact with different objects that can inherently
introduce a high degree of uncertainty. In this work, we introduce a novel
Real-to-Sim reward analysis technique, called Riemannian Motion Predictive
Control (RMPC), to reliably imagine and predict the outcome of taking possible
actions for a real robotic platform. Our proposed RMPC benefits from Riemannian
motion policy and second order dynamic model to compute the acceleration
command and control the robot at every location on the surface. Our approach
creates a 3D object-level recomposed model of the real scene where we can
simulate the effect of different trajectories. We produce a closed-loop
controller to reactively push objects in a continuous action space. We evaluate
the performance of our RMPC approach by conducting experiments on a real robot
platform as well as simulation and compare against several baselines. We
observe that RMPC is robust in cluttered as well as occluded environments and
outperforms the baselines.
Related papers
- Dynamics as Prompts: In-Context Learning for Sim-to-Real System Identifications [23.94013806312391]
We propose a novel approach that dynamically adjusts simulation environment parameters online using in-context learning.
We validate our approach across two tasks: object scooping and table air hockey.
Our approach delivers efficient and smooth system identification, advancing the deployment of robots in dynamic real-world scenarios.
arXiv Detail & Related papers (2024-10-27T07:13:38Z) - RPMArt: Towards Robust Perception and Manipulation for Articulated Objects [56.73978941406907]
We propose a framework towards Robust Perception and Manipulation for Articulated Objects ( RPMArt)
RPMArt learns to estimate the articulation parameters and manipulate the articulation part from the noisy point cloud.
We introduce an articulation-aware classification scheme to enhance its ability for sim-to-real transfer.
arXiv Detail & Related papers (2024-03-24T05:55:39Z) - Learning to navigate efficiently and precisely in real environments [14.52507964172957]
Embodied AI literature focuses on end-to-end agents trained in simulators like Habitat or AI-Thor.
In this work we explore end-to-end training of agents in simulation in settings which minimize the sim2real gap.
arXiv Detail & Related papers (2024-01-25T17:50:05Z) - Towards Transferring Tactile-based Continuous Force Control Policies
from Simulation to Robot [19.789369416528604]
grasp force control aims to manipulate objects safely by limiting the amount of force exerted on the object.
Prior works have either hand-modeled their force controllers, employed model-based approaches, or have not shown sim-to-real transfer.
We propose a model-free deep reinforcement learning approach trained in simulation and then transferred to the robot without further fine-tuning.
arXiv Detail & Related papers (2023-11-13T11:29:06Z) - Nonprehensile Planar Manipulation through Reinforcement Learning with
Multimodal Categorical Exploration [8.343657309038285]
Reinforcement Learning is a powerful framework for developing such robot controllers.
We propose a multimodal exploration approach through categorical distributions, which enables us to train planar pushing RL policies.
We show that the learned policies are robust to external disturbances and observation noise, and scale to tasks with multiple pushers.
arXiv Detail & Related papers (2023-08-04T16:55:00Z) - Robust Visual Sim-to-Real Transfer for Robotic Manipulation [79.66851068682779]
Learning visuomotor policies in simulation is much safer and cheaper than in the real world.
However, due to discrepancies between the simulated and real data, simulator-trained policies often fail when transferred to real robots.
One common approach to bridge the visual sim-to-real domain gap is domain randomization (DR)
arXiv Detail & Related papers (2023-07-28T05:47:24Z) - Residual Physics Learning and System Identification for Sim-to-real
Transfer of Policies on Buoyancy Assisted Legged Robots [14.760426243769308]
In this work, we demonstrate robust sim-to-real transfer of control policies on the BALLU robots via system identification.
Rather than relying on standard supervised learning formulations, we utilize deep reinforcement learning to train an external force policy.
We analyze the improved simulation fidelity by comparing the simulation trajectories against the real-world ones.
arXiv Detail & Related papers (2023-03-16T18:49:05Z) - DeXtreme: Transfer of Agile In-hand Manipulation from Simulation to
Reality [64.51295032956118]
We train a policy that can perform robust dexterous manipulation on an anthropomorphic robot hand.
Our work reaffirms the possibilities of sim-to-real transfer for dexterous manipulation in diverse kinds of hardware and simulator setups.
arXiv Detail & Related papers (2022-10-25T01:51:36Z) - TrafficSim: Learning to Simulate Realistic Multi-Agent Behaviors [74.67698916175614]
We propose TrafficSim, a multi-agent behavior model for realistic traffic simulation.
In particular, we leverage an implicit latent variable model to parameterize a joint actor policy.
We show TrafficSim generates significantly more realistic and diverse traffic scenarios as compared to a diverse set of baselines.
arXiv Detail & Related papers (2021-01-17T00:29:30Z) - Point Cloud Based Reinforcement Learning for Sim-to-Real and Partial
Observability in Visual Navigation [62.22058066456076]
Reinforcement Learning (RL) represents powerful tools to solve complex robotic tasks.
RL does not work directly in the real-world, which is known as the sim-to-real transfer problem.
We propose a method that learns on an observation space constructed by point clouds and environment randomization.
arXiv Detail & Related papers (2020-07-27T17:46:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.