Feynman Integral in Quantum Walk, Barrier-top Scattering and Hadamard
Walk
- URL: http://arxiv.org/abs/2101.07617v2
- Date: Fri, 5 Feb 2021 04:15:11 GMT
- Title: Feynman Integral in Quantum Walk, Barrier-top Scattering and Hadamard
Walk
- Authors: Kenta Higuchi
- Abstract summary: This article relates the discrete quantum walk on $mathbbZ$ with the continuous Schr"odinger operator on $mathbbR$ in the scattering problem.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The aim of this article is to relate the discrete quantum walk on
$\mathbb{Z}$ with the continuous Schr\"odinger operator on $\mathbb{R}$ in the
scattering problem. Each point of $\mathbb{Z}$ is associated with a barrier of
the potential, and the coin operator of the quantum walk is determined by the
transfer matrix between bases of WKB solutions on the classically allowed
regions of both sides of the barrier. This correspondence enables us to
represent each entry of the scattering matrix of the Schr\"odinger operator as
a countable sum of probability amplitudes associated with the paths of the
quantum walker. In particular, the barrier-top scattering corresponds to the
Hadamard walk in the semiclassical limit.
Related papers
- The quantum beam splitter with many partially indistinguishable photons:
multiphotonic interference and asymptotic classical correspondence [44.99833362998488]
We present the analysis of the quantum two-port interferometer in the $n rightarrow infty$ limit of $n$ partially indistinguishable photons.
Our main result is that the output distribution is dominated by the $O(sqrtn)$ channels around a certain $j*$ that depends on the degree of indistinguishability.
The form is essentially the doubly-humped semi-classical envelope of the distribution that would arise from $2 j*$ indistinguishable photons, and which reproduces the corresponding classical intensity distribution.
arXiv Detail & Related papers (2023-12-28T01:48:26Z) - Normal quantum channels and Markovian correlated two-qubit quantum
errors [77.34726150561087]
We study general normally'' distributed random unitary transformations.
On the one hand, a normal distribution induces a unital quantum channel.
On the other hand, the diffusive random walk defines a unital quantum process.
arXiv Detail & Related papers (2023-07-25T15:33:28Z) - Two-Particle Scattering on Non-Translation Invariant Line Lattices [0.0]
Quantum walks have been used to develop quantum algorithms since their inception.
We show that a CPHASE gate can be achieved with high fidelity when the interaction acts only on a small portion of the line graph.
arXiv Detail & Related papers (2023-03-08T02:36:29Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Quantum dynamics corresponding to chaotic BKL scenario [62.997667081978825]
Quantization smears the gravitational singularity avoiding its localization in the configuration space.
Results suggest that the generic singularity of general relativity can be avoided at quantum level.
arXiv Detail & Related papers (2022-04-24T13:32:45Z) - The classical limit of Schr\"{o}dinger operators in the framework of
Berezin quantization and spontaneous symmetry breaking as emergent phenomenon [0.0]
A strict deformation quantization is analysed on the classical phase space $bR2n$.
The existence of this classical limit is in particular proved for ground states of a wide class of Schr"odinger operators.
The support of the classical state is included in certain orbits in $bR2n$ depending on the symmetry of the potential.
arXiv Detail & Related papers (2021-03-22T14:55:57Z) - The foundations of quantum theory and its possible generalizations [0.0]
Possible generalizations of quantum theory permitting to describe in a unique way the development of the quantum system and the measurement process are discussed.
The application of tachyonic field to overcome divergences arising in this equation is analyzed.
arXiv Detail & Related papers (2021-03-09T11:44:48Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - Quantum dynamics and relaxation in comb turbulent diffusion [91.3755431537592]
Continuous time quantum walks in the form of quantum counterparts of turbulent diffusion in comb geometry are considered.
Operators of the form $hatcal H=hatA+ihatB$ are described.
Rigorous analytical analysis is performed for both wave and Green's functions.
arXiv Detail & Related papers (2020-10-13T15:50:49Z) - The Quantum Wasserstein Distance of Order 1 [16.029406401970167]
We propose a generalization of the Wasserstein distance of order 1 to the quantum states of $n$ qudits.
The proposed distance is invariant with respect to permutations of the qudits and unitary operations acting on one qudit.
We also propose a generalization of the Lipschitz constant to quantum observables.
arXiv Detail & Related papers (2020-09-09T18:00:01Z) - A crossover between open quantum random walks to quantum walks [0.0]
The walk connects an open quantum random walk and a quantum walk with parameters $Min mathbbN$ controlling a decoherence effect.
We analytically show that a typical behavior of quantum walks appears even in a small gap of the parameter from the open quantum random walk.
arXiv Detail & Related papers (2020-07-02T07:42:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.