The foundations of quantum theory and its possible generalizations
- URL: http://arxiv.org/abs/2103.05374v1
- Date: Tue, 9 Mar 2021 11:44:48 GMT
- Title: The foundations of quantum theory and its possible generalizations
- Authors: V.A. Franke
- Abstract summary: Possible generalizations of quantum theory permitting to describe in a unique way the development of the quantum system and the measurement process are discussed.
The application of tachyonic field to overcome divergences arising in this equation is analyzed.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Possible generalizations of quantum theory permitting to describe in a unique
way the development of the quantum system and the measurement process are
discussed. The approach to the problem based on the Lindblad's equation for the
statistical operator is reviewed. The Tomonaga-Schwinger like equation of this
type is introduced to establish Lorentz invariance. The application of
tachyonic field to overcome divergences arising in this equation is analyzed.
Other approaches to the problem are shortly discussed.
Related papers
- Time-Dependent Dunkl-Schrödinger Equation with an Angular-Dependent Potential [0.0]
The Schr"odinger equation is a fundamental equation in quantum mechanics.
Over the past decade, theoretical studies have focused on adapting the Dunkl derivative to quantum mechanical problems.
arXiv Detail & Related papers (2024-08-04T13:11:52Z) - On the Path Integral Formulation of Wigner-Dunkl Quantum Mechanics [0.0]
Feynman's path integral approach is studied in the framework of the Wigner-Dunkl deformation of quantum mechanics.
We look at the Euclidean time evolution and the related Dunkl process.
arXiv Detail & Related papers (2023-12-20T10:23:34Z) - Fermionic anyons: entanglement and quantum computation from a resource-theoretic perspective [39.58317527488534]
We develop a framework to characterize the separability of a specific type of one-dimensional quasiparticle known as a fermionic anyon.
We map this notion of fermionic-anyon separability to the free resources of matchgate circuits.
We also identify how entanglement between two qubits encoded in a dual-rail manner, as standard for matchgate circuits, corresponds to the notion of entanglement between fermionic anyons.
arXiv Detail & Related papers (2023-06-01T15:25:19Z) - Quantum Mechanics from Stochastic Processes [0.0]
We construct an explicit one-to-one correspondence between non-relativistic processes and solutions of the Schrodinger equation.
The existence of this equivalence suggests that the Lorentzian path can be defined as an Ito integral, similar to the Euclidean path in terms of the Wiener integral.
arXiv Detail & Related papers (2023-04-15T10:12:51Z) - Theory of Quantum Generative Learning Models with Maximum Mean
Discrepancy [67.02951777522547]
We study learnability of quantum circuit Born machines (QCBMs) and quantum generative adversarial networks (QGANs)
We first analyze the generalization ability of QCBMs and identify their superiorities when the quantum devices can directly access the target distribution.
Next, we prove how the generalization error bound of QGANs depends on the employed Ansatz, the number of qudits, and input states.
arXiv Detail & Related papers (2022-05-10T08:05:59Z) - Quantum dynamics corresponding to chaotic BKL scenario [62.997667081978825]
Quantization smears the gravitational singularity avoiding its localization in the configuration space.
Results suggest that the generic singularity of general relativity can be avoided at quantum level.
arXiv Detail & Related papers (2022-04-24T13:32:45Z) - A Potential Based Quantization Procedure of the Damped Oscillator [0.0]
We formulate the quantization of the dissipative oscillator, which aids understanding of the above mentioned.
We arrive at such an irreversible quantum theory by which the quantum losses can be described.
arXiv Detail & Related papers (2022-04-06T15:17:03Z) - Eigenvalues and Eigenstates of Quantum Rabi Model [0.0]
We present an approach to the exact diagonalization of the quantum Rabi Hamiltonian.
It is shown that the obtained eigenstates can be represented in the basis of the eigenstates of the Jaynes-Cummings Hamiltonian.
arXiv Detail & Related papers (2021-04-26T17:45:41Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - The Time-Evolution of States in Quantum Mechanics [77.34726150561087]
It is argued that the Schr"odinger equation does not yield a correct description of the quantum-mechanical time evolution of states of isolated (open) systems featuring events.
A precise general law for the time evolution of states replacing the Schr"odinger equation is formulated within the so-called ETH-Approach to Quantum Mechanics.
arXiv Detail & Related papers (2021-01-04T16:09:10Z) - Lagrangian description of Heisenberg and Landau-von Neumann equations of
motion [55.41644538483948]
An explicit Lagrangian description is given for the Heisenberg equation on the algebra of operators of a quantum system, and for the Landau-von Neumann equation on the manifold of quantum states which are isospectral with respect to a fixed reference quantum state.
arXiv Detail & Related papers (2020-05-04T22:46:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.