A Unifying Generative Model for Graph Learning Algorithms: Label
Propagation, Graph Convolutions, and Combinations
- URL: http://arxiv.org/abs/2101.07730v2
- Date: Sat, 30 Jan 2021 00:57:35 GMT
- Title: A Unifying Generative Model for Graph Learning Algorithms: Label
Propagation, Graph Convolutions, and Combinations
- Authors: Junteng Jia and Austin R. Benson
- Abstract summary: Semi-supervised learning on graphs is a widely applicable problem in network science and machine learning.
We develop a Markov random field model for the data generation process of node attributes.
We show that label propagation, a linearized graph convolutional network, and their combination can all be derived as conditional expectations.
- Score: 39.8498896531672
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semi-supervised learning on graphs is a widely applicable problem in network
science and machine learning. Two standard algorithms -- label propagation and
graph neural networks -- both operate by repeatedly passing information along
edges, the former by passing labels and the latter by passing node features,
modulated by neural networks. These two types of algorithms have largely
developed separately, and there is little understanding about the structure of
network data that would make one of these approaches work particularly well
compared to the other or when the approaches can be meaningfully combined.
Here, we develop a Markov random field model for the data generation process of
node attributes, based on correlations of attributes on and between vertices,
that motivates and unifies these algorithmic approaches. We show that label
propagation, a linearized graph convolutional network, and their combination
can all be derived as conditional expectations under our model, when
conditioning on different attributes. In addition, the data model highlights
deficiencies in existing graph neural networks (while producing new algorithmic
solutions), serves as a rigorous statistical framework for understanding graph
learning issues such as over-smoothing, creates a testbed for evaluating
inductive learning performance, and provides a way to sample graphs attributes
that resemble empirical data. We also find that a new algorithm derived from
our data generation model, which we call a Linear Graph Convolution, performs
extremely well in practice on empirical data, and provide theoretical
justification for why this is the case.
Related papers
- Self-Supervised Graph Neural Networks for Enhanced Feature Extraction in Heterogeneous Information Networks [16.12856816023414]
This paper explores the applications and challenges of graph neural networks (GNNs) in processing complex graph data brought about by the rapid development of the Internet.
By introducing a self-supervisory mechanism, it is expected to improve the adaptability of existing models to the diversity and complexity of graph data.
arXiv Detail & Related papers (2024-10-23T07:14:37Z) - State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
Graph-level learning has been applied to many tasks including comparison, regression, classification, and more.
Traditional approaches to learning a set of graphs rely on hand-crafted features, such as substructures.
Deep learning has helped graph-level learning adapt to the growing scale of graphs by extracting features automatically and encoding graphs into low-dimensional representations.
arXiv Detail & Related papers (2023-01-14T09:15:49Z) - GrannGAN: Graph annotation generative adversarial networks [72.66289932625742]
We consider the problem of modelling high-dimensional distributions and generating new examples of data with complex relational feature structure coherent with a graph skeleton.
The model we propose tackles the problem of generating the data features constrained by the specific graph structure of each data point by splitting the task into two phases.
In the first it models the distribution of features associated with the nodes of the given graph, in the second it complements the edge features conditionally on the node features.
arXiv Detail & Related papers (2022-12-01T11:49:07Z) - Learning Graph Structure from Convolutional Mixtures [119.45320143101381]
We propose a graph convolutional relationship between the observed and latent graphs, and formulate the graph learning task as a network inverse (deconvolution) problem.
In lieu of eigendecomposition-based spectral methods, we unroll and truncate proximal gradient iterations to arrive at a parameterized neural network architecture that we call a Graph Deconvolution Network (GDN)
GDNs can learn a distribution of graphs in a supervised fashion, perform link prediction or edge-weight regression tasks by adapting the loss function, and they are inherently inductive.
arXiv Detail & Related papers (2022-05-19T14:08:15Z) - Heterogeneous Graph Neural Networks using Self-supervised Reciprocally
Contrastive Learning [102.9138736545956]
Heterogeneous graph neural network (HGNN) is a very popular technique for the modeling and analysis of heterogeneous graphs.
We develop for the first time a novel and robust heterogeneous graph contrastive learning approach, namely HGCL, which introduces two views on respective guidance of node attributes and graph topologies.
In this new approach, we adopt distinct but most suitable attribute and topology fusion mechanisms in the two views, which are conducive to mining relevant information in attributes and topologies separately.
arXiv Detail & Related papers (2022-04-30T12:57:02Z) - Learning to Learn Graph Topologies [27.782971146122218]
We learn a mapping from node data to the graph structure based on the idea of learning to optimise (L2O)
The model is trained in an end-to-end fashion with pairs of node data and graph samples.
Experiments on both synthetic and real-world data demonstrate that our model is more efficient than classic iterative algorithms in learning a graph with specific topological properties.
arXiv Detail & Related papers (2021-10-19T08:42:38Z) - Graph Belief Propagation Networks [34.137798598227874]
We introduce a model that combines the advantages of graph neural networks and collective classification.
In our model, potentials on each node only depend on that node's features, and edge potentials are learned via a coupling matrix.
Our approach can be viewed as either an interpretable message-passing graph neural network or a collective classification method with higher capacity and modernized training.
arXiv Detail & Related papers (2021-06-06T05:24:06Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
We propose a robust framework for adversarial graph embedding, named AGE.
AGE generates the fake neighbor nodes as the enhanced negative samples from the implicit distribution.
Based on this framework, we propose three models to handle three types of graph data.
arXiv Detail & Related papers (2021-05-22T07:05:48Z) - Co-embedding of Nodes and Edges with Graph Neural Networks [13.020745622327894]
Graph embedding is a way to transform and encode the data structure in high dimensional and non-Euclidean feature space.
CensNet is a general graph embedding framework, which embeds both nodes and edges to a latent feature space.
Our approach achieves or matches the state-of-the-art performance in four graph learning tasks.
arXiv Detail & Related papers (2020-10-25T22:39:31Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
Graph representation learning has emerged as a powerful technique for addressing real-world problems.
We design Graph Contrastive Coding -- a self-supervised graph neural network pre-training framework.
We conduct experiments on three graph learning tasks and ten graph datasets.
arXiv Detail & Related papers (2020-06-17T16:18:35Z) - Machine Learning on Graphs: A Model and Comprehensive Taxonomy [22.73365477040205]
We bridge the gap between graph neural networks, network embedding and graph regularization models.
Specifically, we propose a Graph Decoder Model (GRAPHEDM), which generalizes popular algorithms for semi-supervised learning on graphs.
arXiv Detail & Related papers (2020-05-07T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.