WeChat AI's Submission for DSTC9 Interactive Dialogue Evaluation Track
- URL: http://arxiv.org/abs/2101.07947v1
- Date: Wed, 20 Jan 2021 03:19:50 GMT
- Title: WeChat AI's Submission for DSTC9 Interactive Dialogue Evaluation Track
- Authors: Zekang Li, Zongjia Li, Jinchao Zhang, Yang Feng and Jie Zhou
- Abstract summary: We propose a novel Dialogue Planning Model (DPM) to capture conversation flow in the interaction with humans.
We also design an integrated open-domain dialogue system containing pre-process, dialogue model, scoring model, and post-process, which can generate fluent, coherent, consistent, and humanlike responses.
We tie 1st on human ratings and also get the highest Meteor, and Bert-score in sub-task 1, and rank 3rd on interactive human evaluation in sub-task 2.
- Score: 20.90559634062167
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We participate in the DSTC9 Interactive Dialogue Evaluation Track (Gunasekara
et al. 2020) sub-task 1 (Knowledge Grounded Dialogue) and sub-task 2
(Interactive Dialogue). In sub-task 1, we employ a pre-trained language model
to generate topic-related responses and propose a response ensemble method for
response selection. In sub-task2, we propose a novel Dialogue Planning Model
(DPM) to capture conversation flow in the interaction with humans. We also
design an integrated open-domain dialogue system containing pre-process,
dialogue model, scoring model, and post-process, which can generate fluent,
coherent, consistent, and humanlike responses. We tie 1st on human ratings and
also get the highest Meteor, and Bert-score in sub-task 1, and rank 3rd on
interactive human evaluation in sub-task 2.
Related papers
- WavChat: A Survey of Spoken Dialogue Models [66.82775211793547]
Recent advancements in spoken dialogue models, exemplified by systems like GPT-4o, have captured significant attention in the speech domain.
These advanced spoken dialogue models not only comprehend audio, music, and other speech-related features, but also capture stylistic and timbral characteristics in speech.
Despite the progress in spoken dialogue systems, there is a lack of comprehensive surveys that systematically organize and analyze these systems.
arXiv Detail & Related papers (2024-11-15T04:16:45Z) - Let's Go Real Talk: Spoken Dialogue Model for Face-to-Face Conversation [55.043492250775294]
We introduce a novel Face-to-Face spoken dialogue model.
It processes audio-visual speech from user input and generates audio-visual speech as the response.
We also introduce MultiDialog, the first large-scale multimodal spoken dialogue corpus.
arXiv Detail & Related papers (2024-06-12T04:48:36Z) - Interactive Conversational Head Generation [68.76774230274076]
We introduce a new conversation head generation benchmark for synthesizing behaviors of a single interlocutor in a face-to-face conversation.
The capability to automatically synthesize interlocutors which can participate in long and multi-turn conversations is vital and offer benefits for various applications.
arXiv Detail & Related papers (2023-07-05T08:06:26Z) - KETOD: Knowledge-Enriched Task-Oriented Dialogue [77.59814785157877]
Existing studies in dialogue system research mostly treat task-oriented dialogue and chit-chat as separate domains.
We investigate how task-oriented dialogue and knowledge-grounded chit-chat can be effectively integrated into a single model.
arXiv Detail & Related papers (2022-05-11T16:01:03Z) - SalesBot: Transitioning from Chit-Chat to Task-Oriented Dialogues [22.89699254073016]
How smoothly transitioning from social chatting to task-oriented dialogues is important for triggering business opportunities.
This paper proposes a framework to automatically generate many dialogues without human involvement.
The released data has a great potential of guiding future research directions and commercial activities.
arXiv Detail & Related papers (2022-04-22T09:31:13Z) - TOD-DA: Towards Boosting the Robustness of Task-oriented Dialogue
Modeling on Spoken Conversations [24.245354500835465]
We propose a novel model-agnostic data augmentation paradigm to boost the robustness of task-oriented dialogue modeling on spoken conversations.
Our approach ranked first in both tasks of DSTC10 Track2, a benchmark for task-oriented dialogue modeling on spoken conversations.
arXiv Detail & Related papers (2021-12-23T10:04:25Z) - UniDS: A Unified Dialogue System for Chit-Chat and Task-oriented
Dialogues [59.499965460525694]
We propose a unified dialogue system (UniDS) with the two aforementioned skills.
We design a unified dialogue data schema, compatible for both chit-chat and task-oriented dialogues.
We train UniDS with mixed dialogue data from a pretrained chit-chat dialogue model.
arXiv Detail & Related papers (2021-10-15T11:56:47Z) - A Unified Pre-training Framework for Conversational AI [25.514505462661763]
PLATO-2 is trained via two-stage curriculum learning to fit the simplified one-to-one mapping relationship.
PLATO-2 has obtained the 1st place in all three tasks, verifying its effectiveness as a unified framework for various dialogue systems.
arXiv Detail & Related papers (2021-05-06T07:27:11Z) - Adding Chit-Chat to Enhance Task-Oriented Dialogues [36.93917437554091]
Chit-Chat can be added to task-oriented dialogues to make virtual assistant conversations more engaging and interactive.
We present our new chit-chat-based annotations to 23.8K dialogues from two popular task-oriented dialogue datasets.
We also propose three new models for adding chit-chat to task-oriented dialogues, explicitly trained to predict user goals and to generate contextually relevant chit-chat responses.
arXiv Detail & Related papers (2020-10-24T03:22:43Z) - TOD-BERT: Pre-trained Natural Language Understanding for Task-Oriented
Dialogue [113.45485470103762]
In this work, we unify nine human-human and multi-turn task-oriented dialogue datasets for language modeling.
To better model dialogue behavior during pre-training, we incorporate user and system tokens into the masked language modeling.
arXiv Detail & Related papers (2020-04-15T04:09:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.