Directed Acyclic Graph Neural Networks
- URL: http://arxiv.org/abs/2101.07965v3
- Date: Tue, 2 Feb 2021 18:45:44 GMT
- Title: Directed Acyclic Graph Neural Networks
- Authors: Veronika Thost, Jie Chen
- Abstract summary: We focus on a special, yet widely used, type of graphs -- DAGs -- and inject a stronger inductive bias -- partial ordering -- into the neural network design.
We propose the emphdirected acyclic graph relational neural network, DAGNN, an architecture that processes information according to the flow defined by the partial order.
- Score: 9.420935957200518
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph-structured data ubiquitously appears in science and engineering. Graph
neural networks (GNNs) are designed to exploit the relational inductive bias
exhibited in graphs; they have been shown to outperform other forms of neural
networks in scenarios where structure information supplements node features.
The most common GNN architecture aggregates information from neighborhoods
based on message passing. Its generality has made it broadly applicable. In
this paper, we focus on a special, yet widely used, type of graphs -- DAGs --
and inject a stronger inductive bias -- partial ordering -- into the neural
network design. We propose the \emph{directed acyclic graph neural network},
DAGNN, an architecture that processes information according to the flow defined
by the partial order. DAGNN can be considered a framework that entails earlier
works as special cases (e.g., models for trees and models updating node
representations recurrently), but we identify several crucial components that
prior architectures lack. We perform comprehensive experiments, including
ablation studies, on representative DAG datasets (i.e., source code, neural
architectures, and probabilistic graphical models) and demonstrate the
superiority of DAGNN over simpler DAG architectures as well as general graph
architectures.
Related papers
- Harnessing Collective Structure Knowledge in Data Augmentation for Graph Neural Networks [25.12261412297796]
Graph neural networks (GNNs) have achieved state-of-the-art performance in graph representation learning.
We propose a novel approach, namely collective structure knowledge-augmented graph neural network (CoS-GNN)
arXiv Detail & Related papers (2024-05-17T08:50:00Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
Graph neural networks (GNNs) demonstrate a robust capability for representation learning on graphs with complex structures.
A novel GNNs framework, dubbed Decoupled Graph Neural Networks (DGNN), is introduced to obtain a more comprehensive embedding representation of nodes.
Experimental results conducted on several graph benchmark datasets verify DGNN's superiority in node classification task.
arXiv Detail & Related papers (2024-01-28T06:43:13Z) - Connectivity Optimized Nested Graph Networks for Crystal Structures [1.1470070927586016]
Graph neural networks (GNNs) have been applied to a large variety of applications in materials science and chemistry.
We show that our suggested models systematically improve state-of-the-art results across all tasks within the MatBench benchmark.
arXiv Detail & Related papers (2023-02-27T19:26:48Z) - Learning Graph Structure from Convolutional Mixtures [119.45320143101381]
We propose a graph convolutional relationship between the observed and latent graphs, and formulate the graph learning task as a network inverse (deconvolution) problem.
In lieu of eigendecomposition-based spectral methods, we unroll and truncate proximal gradient iterations to arrive at a parameterized neural network architecture that we call a Graph Deconvolution Network (GDN)
GDNs can learn a distribution of graphs in a supervised fashion, perform link prediction or edge-weight regression tasks by adapting the loss function, and they are inherently inductive.
arXiv Detail & Related papers (2022-05-19T14:08:15Z) - Hyperbolic Graph Neural Networks: A Review of Methods and Applications [55.5502008501764]
Graph neural networks generalize conventional neural networks to graph-structured data.
The performance of Euclidean models in graph-related learning is still bounded and limited by the representation ability of Euclidean geometry.
Recently, hyperbolic space has gained increasing popularity in processing graph data with tree-like structure and power-law distribution.
arXiv Detail & Related papers (2022-02-28T15:08:48Z) - Overcoming Oversmoothness in Graph Convolutional Networks via Hybrid
Scattering Networks [11.857894213975644]
We propose a hybrid graph neural network (GNN) framework that combines traditional GCN filters with band-pass filters defined via the geometric scattering transform.
Our theoretical results establish the complementary benefits of the scattering filters to leverage structural information from the graph, while our experiments show the benefits of our method on various learning tasks.
arXiv Detail & Related papers (2022-01-22T00:47:41Z) - ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network [72.16255675586089]
We propose an Adaptive Curvature Exploration Hyperbolic Graph NeuralNetwork named ACE-HGNN to adaptively learn the optimal curvature according to the input graph and downstream tasks.
Experiments on multiple real-world graph datasets demonstrate a significant and consistent performance improvement in model quality with competitive performance and good generalization ability.
arXiv Detail & Related papers (2021-10-15T07:18:57Z) - Graph Information Bottleneck [77.21967740646784]
Graph Neural Networks (GNNs) provide an expressive way to fuse information from network structure and node features.
Inheriting from the general Information Bottleneck (IB), GIB aims to learn the minimal sufficient representation for a given task.
We show that our proposed models are more robust than state-of-the-art graph defense models.
arXiv Detail & Related papers (2020-10-24T07:13:00Z) - Hierarchical Message-Passing Graph Neural Networks [12.207978823927386]
We propose a novel Hierarchical Message-passing Graph Neural Networks framework.
Key idea is generating a hierarchical structure that re-organises all nodes in a flat graph into multi-level super graphs.
We present the first model to implement this framework, termed Hierarchical Community-aware Graph Neural Network (HC-GNN)
arXiv Detail & Related papers (2020-09-08T13:11:07Z) - Architectural Implications of Graph Neural Networks [17.01480604968118]
Graph neural networks (GNN) represent an emerging line of deep learning models that operate on graph structures.
GNN is not as well understood in the system and architecture community as its counterparts such as multi-layer perceptrons and convolutional neural networks.
arXiv Detail & Related papers (2020-09-02T03:36:24Z) - Node Masking: Making Graph Neural Networks Generalize and Scale Better [71.51292866945471]
Graph Neural Networks (GNNs) have received a lot of interest in the recent times.
In this paper, we utilize some theoretical tools to better visualize the operations performed by state of the art spatial GNNs.
We introduce a simple concept, Node Masking, that allows them to generalize and scale better.
arXiv Detail & Related papers (2020-01-17T06:26:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.