論文の概要: Scalable Deep Compressive Sensing
- arxiv url: http://arxiv.org/abs/2101.08024v2
- Date: Fri, 22 Jan 2021 02:53:03 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-22 01:19:00.421805
- Title: Scalable Deep Compressive Sensing
- Title(参考訳): スケーラブルなDeep Compressive Sensing
- Authors: Zhonghao Zhang and Yipeng Liu and Xingyu Cao and Fei Wen and Ce Zhu
- Abstract要約: 既存のディープラーニング手法の多くは、異なるサブサンプリング比率のために異なるモデルをトレーニングする。
本研究では,拡張性深部圧縮センシング(SDCS)と呼ばれるフレームワークを開発し,既存のすべてのエンドツーエンド学習モデルの拡張性サンプリングと再構成を行う。
実験の結果,SDCSを用いたモデルでは,良好な性能を維持しながら構造を変更せずにSSRを達成でき,SDCSは他のSSR法よりも優れていた。
- 参考スコア(独自算出の注目度): 43.92187349325869
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning has been used to image compressive sensing (CS) for enhanced
reconstruction performance. However, most existing deep learning methods train
different models for different subsampling ratios, which brings additional
hardware burden. In this paper, we develop a general framework named scalable
deep compressive sensing (SDCS) for the scalable sampling and reconstruction
(SSR) of all existing end-to-end-trained models. In the proposed way, images
are measured and initialized linearly. Two sampling masks are introduced to
flexibly control the subsampling ratios used in sampling and reconstruction,
respectively. To make the reconstruction model adapt to any subsampling ratio,
a training strategy dubbed scalable training is developed. In scalable
training, the model is trained with the sampling matrix and the initialization
matrix at various subsampling ratios by integrating different sampling matrix
masks. Experimental results show that models with SDCS can achieve SSR without
changing their structure while maintaining good performance, and SDCS
outperforms other SSR methods.
- Abstract(参考訳): 深層学習は画像圧縮センシング(cs)に用いられており、再構成性能が向上している。
しかし、既存のディープラーニング手法の多くは、異なるサブサンプリング比率で異なるモデルをトレーニングしており、ハードウェアの負担が増している。
本稿では,拡張性深部圧縮センシング(SDCS)と呼ばれる,既存のエンドツーエンド学習モデルの拡張性サンプリング・再構成(SSR)のための汎用フレームワークを開発する。
提案手法では,画像の測定と初期化を線形に行う。
2つのサンプリングマスクを導入し、それぞれサンプリングと再構成に使用されるサブサンプリング比を柔軟に制御する。
再構成モデルを任意のサブサンプリング比率に適応させるため、スケーラブルトレーニングと呼ばれるトレーニング戦略を開発する。
スケーラブルなトレーニングでは、異なるサンプリング行列マスクを統合することで、サンプル行列と初期化行列を様々なサブサンプリング比でトレーニングする。
実験の結果,SDCSを用いたモデルでは,良好な性能を維持しながら構造を変更せずにSSRを達成でき,SDCSは他のSSR法よりも優れていた。
関連論文リスト
- A Unifying Multi-sampling-ratio CS-MRI Framework With Two-grid-cycle
Correction and Geometric Prior Distillation [7.643154460109723]
本稿では,モデルベースと深層学習に基づく手法の利点を融合して,深層展開型マルチサンプリング比CS-MRIフレームワークを提案する。
マルチグリッドアルゴリズムにインスパイアされ、まずCS-MRIに基づく最適化アルゴリズムを補正蒸留方式に組み込む。
各段の圧縮サンプリング比から適応的なステップ長と雑音レベルを学習するために条件モジュールを用いる。
論文 参考訳(メタデータ) (2022-05-14T13:36:27Z) - PUERT: Probabilistic Under-sampling and Explicable Reconstruction
Network for CS-MRI [47.24613772568027]
圧縮センシングMRI(Compressed Sensing MRI)は,k空間データをサンプリングし,MRI画像の高速化を目的とする。
本稿では,サンプリングパターンと再構成ネットワークを協調的に最適化するために,PUERTと呼ばれる新しいエンドツーエンドの確率的アンダーサンプリングと明示的再構成neTworkを提案する。
2つの広く利用されているMRIデータセットの実験により、提案したPUERTは、定量的な測定値と視覚的品質の両方の観点から、最先端の結果が得られることを示した。
論文 参考訳(メタデータ) (2022-04-24T04:23:57Z) - Accelerated MRI With Deep Linear Convolutional Transform Learning [7.927206441149002]
近年の研究では、深層学習に基づくMRI再構成は、従来の手法よりも複数の応用において優れていることが示されている。
本研究では, CS, TL, DL再構成のアイデアを組み合わせて, 深い線形畳み込み変換を学習する。
提案手法は,均一なアンダーサンプリングパターンをサポートしながら,DL法に匹敵するレベルのMR画像を再構成可能であることを示す。
論文 参考訳(メタデータ) (2022-04-17T04:47:32Z) - Coarse-to-Fine Sparse Transformer for Hyperspectral Image Reconstruction [138.04956118993934]
本稿では, サース・トゥ・ファインス・スパース・トランス (CST) を用いた新しいトランス方式を提案する。
HSI再構成のための深層学習にHSI空間を埋め込んだCST
特に,CSTは,提案したスペクトル認識スクリーニング機構(SASM)を粗いパッチ選択に使用し,選択したパッチを,細かなピクセルクラスタリングと自己相似性キャプチャのために,カスタマイズしたスペクトル集約ハッシュ型マルチヘッド自己アテンション(SAH-MSA)に入力する。
論文 参考訳(メタデータ) (2022-03-09T16:17:47Z) - Improving the Sample-Complexity of Deep Classification Networks with
Invariant Integration [77.99182201815763]
変換によるクラス内分散に関する事前知識を活用することは、ディープニューラルネットワークのサンプル複雑性を改善するための強力な方法である。
そこで本研究では,アプリケーションの複雑な問題に対処するために,プルーニング法に基づく新しい単項選択アルゴリズムを提案する。
本稿では,Rotated-MNIST,SVHN,CIFAR-10データセットにおけるサンプルの複雑さの改善について述べる。
論文 参考訳(メタデータ) (2022-02-08T16:16:11Z) - Flexible Style Image Super-Resolution using Conditional Objective [11.830754741007029]
マルチタスク学習の利点を生かして、単一調整可能なSRモデルを様々な損失の組み合わせで訓練するより効率的な方法を提案する。
具体的には、訓練中に条件付き目的を持つSRモデルを最適化し、目的は異なる特徴レベルにおける複数の知覚的損失の重み付け和である。
推論フェーズにおいて、トレーニングされたモデルは、スタイル制御マップに条件付きで、局所的に異なる出力を生成することができる。
論文 参考訳(メタデータ) (2022-01-13T11:39:29Z) - Toward Real-World Super-Resolution via Adaptive Downsampling Models [58.38683820192415]
本研究では,制約のある事前知識を伴わずに未知のサンプル処理をシミュレートする手法を提案する。
対の例を使わずに対象LR画像の分布を模倣する汎用化可能な低周波損失(LFL)を提案する。
論文 参考訳(メタデータ) (2021-09-08T06:00:32Z) - Insta-RS: Instance-wise Randomized Smoothing for Improved Robustness and
Accuracy [9.50143683501477]
Insta-RSは、テスト例にカスタマイズされたガウス分散を割り当てるマルチスタート検索アルゴリズムである。
Insta-RS Trainは、各トレーニング例のノイズレベルを適応的に調整し、カスタマイズする新しい2段階トレーニングアルゴリズムです。
本手法は,平均認定半径(ACR)とクリーンデータ精度を有意に向上させることを示した。
論文 参考訳(メタデータ) (2021-03-07T19:46:07Z) - Self-supervised Pre-training with Hard Examples Improves Visual
Representations [110.23337264762512]
自己教師付き事前学習(ssp)は、ランダムな画像変換を用いて視覚表現学習のためのトレーニングデータを生成する。
まず,既存のSSPメソッドを擬似ラベル予測学習として統合するモデリングフレームワークを提案する。
そこで本研究では,疑似ラベルの予測が難しい学習例をランダムな画像変換で生成するデータ拡張手法を提案する。
論文 参考訳(メタデータ) (2020-12-25T02:44:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。