論文の概要: Scalable Deep Compressive Sensing
- arxiv url: http://arxiv.org/abs/2101.08024v2
- Date: Fri, 22 Jan 2021 02:53:03 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-22 01:19:00.421805
- Title: Scalable Deep Compressive Sensing
- Title(参考訳): スケーラブルなDeep Compressive Sensing
- Authors: Zhonghao Zhang and Yipeng Liu and Xingyu Cao and Fei Wen and Ce Zhu
- Abstract要約: 既存のディープラーニング手法の多くは、異なるサブサンプリング比率のために異なるモデルをトレーニングする。
本研究では,拡張性深部圧縮センシング(SDCS)と呼ばれるフレームワークを開発し,既存のすべてのエンドツーエンド学習モデルの拡張性サンプリングと再構成を行う。
実験の結果,SDCSを用いたモデルでは,良好な性能を維持しながら構造を変更せずにSSRを達成でき,SDCSは他のSSR法よりも優れていた。
- 参考スコア(独自算出の注目度): 43.92187349325869
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning has been used to image compressive sensing (CS) for enhanced
reconstruction performance. However, most existing deep learning methods train
different models for different subsampling ratios, which brings additional
hardware burden. In this paper, we develop a general framework named scalable
deep compressive sensing (SDCS) for the scalable sampling and reconstruction
(SSR) of all existing end-to-end-trained models. In the proposed way, images
are measured and initialized linearly. Two sampling masks are introduced to
flexibly control the subsampling ratios used in sampling and reconstruction,
respectively. To make the reconstruction model adapt to any subsampling ratio,
a training strategy dubbed scalable training is developed. In scalable
training, the model is trained with the sampling matrix and the initialization
matrix at various subsampling ratios by integrating different sampling matrix
masks. Experimental results show that models with SDCS can achieve SSR without
changing their structure while maintaining good performance, and SDCS
outperforms other SSR methods.
- Abstract(参考訳): 深層学習は画像圧縮センシング(cs)に用いられており、再構成性能が向上している。
しかし、既存のディープラーニング手法の多くは、異なるサブサンプリング比率で異なるモデルをトレーニングしており、ハードウェアの負担が増している。
本稿では,拡張性深部圧縮センシング(SDCS)と呼ばれる,既存のエンドツーエンド学習モデルの拡張性サンプリング・再構成(SSR)のための汎用フレームワークを開発する。
提案手法では,画像の測定と初期化を線形に行う。
2つのサンプリングマスクを導入し、それぞれサンプリングと再構成に使用されるサブサンプリング比を柔軟に制御する。
再構成モデルを任意のサブサンプリング比率に適応させるため、スケーラブルトレーニングと呼ばれるトレーニング戦略を開発する。
スケーラブルなトレーニングでは、異なるサンプリング行列マスクを統合することで、サンプル行列と初期化行列を様々なサブサンプリング比でトレーニングする。
実験の結果,SDCSを用いたモデルでは,良好な性能を維持しながら構造を変更せずにSSRを達成でき,SDCSは他のSSR法よりも優れていた。
関連論文リスト
- Fine Structure-Aware Sampling: A New Sampling Training Scheme for
Pixel-Aligned Implicit Models in Single-View Human Reconstruction [105.46091601932524]
本研究では,単一視点の人物再構成のための暗黙的画素アライメントモデルをトレーニングするために,FSS(Final Structured-Aware Sampling)を導入する。
FSSは表面の厚さと複雑さに積極的に適応する。
また、画素アライメント型暗黙的モデルのためのメッシュ厚み損失信号を提案する。
論文 参考訳(メタデータ) (2024-02-29T14:26:46Z) - SAM-DiffSR: Structure-Modulated Diffusion Model for Image
Super-Resolution [49.205865715776106]
本稿では,SAM-DiffSRモデルを提案する。このモデルでは,ノイズをサンプリングする過程において,SAMからの微細な構造情報を利用することで,推論時に追加の計算コストを伴わずに画像品質を向上させることができる。
DIV2Kデータセット上でPSNRの最大値で既存の拡散法を0.74dB以上越えることにより,提案手法の有効性を実証した。
論文 参考訳(メタデータ) (2024-02-27T01:57:02Z) - MsDC-DEQ-Net: Deep Equilibrium Model (DEQ) with Multi-scale Dilated
Convolution for Image Compressive Sensing (CS) [0.0]
圧縮センシング(CS)は、従来のサンプリング法よりも少ない測定値を用いてスパース信号の回復を可能にする技術である。
我々はCSを用いた自然画像再構成のための解釈可能かつ簡潔なニューラルネットワークモデルを構築した。
MsDC-DEQ-Netと呼ばれるこのモデルは、最先端のネットワークベースの手法と比較して、競争力のある性能を示す。
論文 参考訳(メタデータ) (2024-01-05T16:25:58Z) - Optimizing Sampling Patterns for Compressed Sensing MRI with Diffusion
Generative Models [75.52575380824051]
圧縮センシングマルチコイルMRIにおけるサブサンプリングパターンを最適化する学習手法を提案する。
拡散モデルとMRI計測プロセスにより得られた後部平均推定値に基づいて1段階の再構成を行う。
本手法では,効果的なサンプリングパターンの学習には5つのトレーニング画像が必要である。
論文 参考訳(メタデータ) (2023-06-05T22:09:06Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
画像超解像(SR)は、CNNからトランスフォーマーアーキテクチャへの広範なニューラルネットワーク設計を目撃している。
本研究は,市販のネットワーク設計を生かし,基礎となる計算オーバーヘッドを低減するため,超高解像度イテレーションにおけるネットワークプルーニングの可能性について検討する。
本研究では, ランダムネットワークのスパース構造を最適化し, 重要でない重みを小さめに微調整することにより, 反復型軟収縮率(ISS-P)法を提案する。
論文 参考訳(メタデータ) (2023-03-16T21:06:13Z) - Effective Invertible Arbitrary Image Rescaling [77.46732646918936]
Invertible Neural Networks (INN)は、ダウンスケーリングとアップスケーリングのサイクルを共同で最適化することにより、アップスケーリングの精度を大幅に向上させることができる。
本研究の1つのモデルのみをトレーニングすることにより、任意の画像再スケーリングを実現するために、単純で効果的な非可逆的再スケーリングネットワーク(IARN)を提案する。
LR出力の知覚品質を損なうことなく、双方向任意再スケーリングにおいて最先端(SOTA)性能を実現する。
論文 参考訳(メタデータ) (2022-09-26T22:22:30Z) - A theoretical framework for self-supervised MR image reconstruction
using sub-sampling via variable density Noisier2Noise [0.0]
我々は、Noisier2Noiseフレームワークを使用して、Data UnderSuperviseを介して自己サンプル学習のパフォーマンスを解析的に説明します。
サンプル集合を分割して、サブセットが元のサンプリングマスクと同じ種類の分布を持つようにすることを提案する。
論文 参考訳(メタデータ) (2022-05-20T16:19:23Z) - A Unifying Multi-sampling-ratio CS-MRI Framework With Two-grid-cycle
Correction and Geometric Prior Distillation [7.643154460109723]
本稿では,モデルベースと深層学習に基づく手法の利点を融合して,深層展開型マルチサンプリング比CS-MRIフレームワークを提案する。
マルチグリッドアルゴリズムにインスパイアされ、まずCS-MRIに基づく最適化アルゴリズムを補正蒸留方式に組み込む。
各段の圧縮サンプリング比から適応的なステップ長と雑音レベルを学習するために条件モジュールを用いる。
論文 参考訳(メタデータ) (2022-05-14T13:36:27Z) - Accelerated MRI With Deep Linear Convolutional Transform Learning [7.927206441149002]
近年の研究では、深層学習に基づくMRI再構成は、従来の手法よりも複数の応用において優れていることが示されている。
本研究では, CS, TL, DL再構成のアイデアを組み合わせて, 深い線形畳み込み変換を学習する。
提案手法は,均一なアンダーサンプリングパターンをサポートしながら,DL法に匹敵するレベルのMR画像を再構成可能であることを示す。
論文 参考訳(メタデータ) (2022-04-17T04:47:32Z) - Flexible Style Image Super-Resolution using Conditional Objective [11.830754741007029]
マルチタスク学習の利点を生かして、単一調整可能なSRモデルを様々な損失の組み合わせで訓練するより効率的な方法を提案する。
具体的には、訓練中に条件付き目的を持つSRモデルを最適化し、目的は異なる特徴レベルにおける複数の知覚的損失の重み付け和である。
推論フェーズにおいて、トレーニングされたモデルは、スタイル制御マップに条件付きで、局所的に異なる出力を生成することができる。
論文 参考訳(メタデータ) (2022-01-13T11:39:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。